High Voltage Transistor

PNP Silicon

The MMBT5401M3 device is a spin-off of our popular SOT-23 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

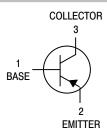
Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-150	Vdc
Collector - Base Voltage	V _{CBO}	-160	Vdc
Emitter - Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current - Continuous	Ic	-60	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate Above 25°C	P _D	130	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	470	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

^{1.} FR-5 @ 100 mm², 1.0 oz. copper traces, still air.



ON Semiconductor®

www.onsemi.com

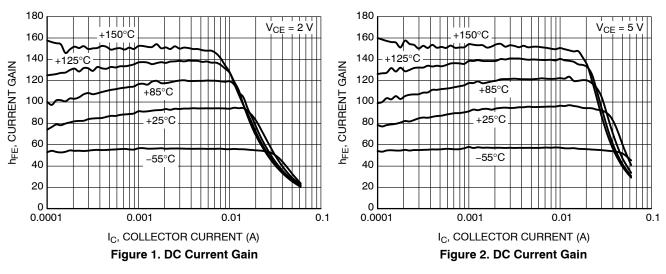
SOT-723 CASE 631AA

MARKING DIAGRAM

RJ = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT5401M3T5G	SOT-723 (Pb-Free)	8000 / Tape & Reel
NSVMMBT5401M3T5G	SOT-723 (Pb-Free)	8000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage $(I_C = -1.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	-150	_	-	V
Collector – Base Breakdown Voltage $(I_C = -100 \mu A, I_E = 0)$	V _{(BR)CBO}	-160	-	-	V
Emitter – Base Breakdown Voltage ($I_E = -10 \mu A, I_C = 0$)	V _{(BR)EBO}	-5.0	-	-	V
Collector-Base Cutoff Current (V _{CB} = -120 V, I _E = 0)	I _{CBO}	-	-1.6	-100	nA
Emitter Cutoff Current (V _{BE} = -5 V)	I _{EBO}	-	-0.20	-100	nA
ON CHARACTERISTICS					
DC Current Gain $ \begin{array}{l} (I_C = -1.0 \text{ mA, V}_{CE} = -5.0 \text{ V}) \\ (I_C = -10 \text{ mA, V}_{CE} = -5.0 \text{ V}) \\ (I_C = -50 \text{ mA, V}_{CE} = -5.0 \text{ V}) \end{array} $	h _{FE}	50 60 20	80 90 40	- 240 -	-
Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mA}$, $I_B = -1.0 \text{ mA}$) ($I_C = -50 \text{ mA}$, $I_B = -5.0 \text{ mA}$)	V _{CE(sat)}		-0.09 -0.15	-0.25 -0.60	V
Base – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -1.0$ mA) ($I_C = -50$ mA, $I_B = -5.0$ mA)	V _{BE(sat)}	- -	-0.76 -0.92	-1.0 -1.0	V
SMALL-SIGNAL CHARACTERISTICS					
Current – Gain — Bandwidth Product (I _C = -10 mA, V _{CE} = -5.0 V, f = 100 MHz)	f _T	100	180	300	MHz
Input Capacitance (V _{EB} = -3 V, I _C = 0, f = 1.0 MHz)	C _{ibo}	-	12.5	15	pF
Output Capacitance (V _{CB} = -10 V, I _E = 0, f = 1.0 MHz)	C _{obo}	-	1.5	6.0	pF
Small Signal Current Gain ($I_C = -1.0 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ kHz}$)	h _{fe}	40	-	200	_
Noise Figure (I _C = -200 μ A, V _{CE} = -5.0 V, R _S = 10 Ω , f = 1.0 kHz)	NF	_	_	8.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) 1.6 40 mA $I_C/I_B = 10$ 30 mA 50 mA V_{CE(sat)}, COLLECTOR-EMITTER SATURATION VOLTAGE (V) 1.4 20 mA 1.2 10 mA 1.0 60 mA $I_C = 1.0 \text{ mA}$ 0.2 8.0 0.6 0.4 +85°C +25°C 0.2 0.005 0.05 0.5 5 50 0.0001 0.001 0.01 IB, BASE CURRENT (mA) I_C, COLLECTOR CURRENT (A)

Figure 3. Collector Saturation Region

Figure 4. Collector-Emitter Saturation Region

-55°C

0.1

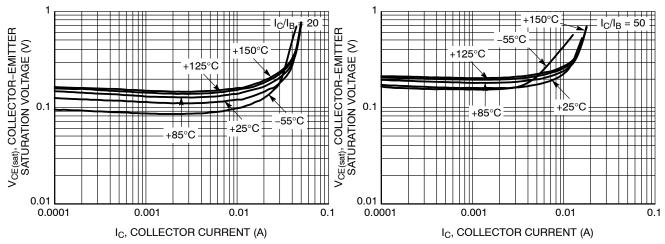


Figure 5. Collector-Emitter Saturation Region

Figure 6. Collector-Emitter Saturation Region

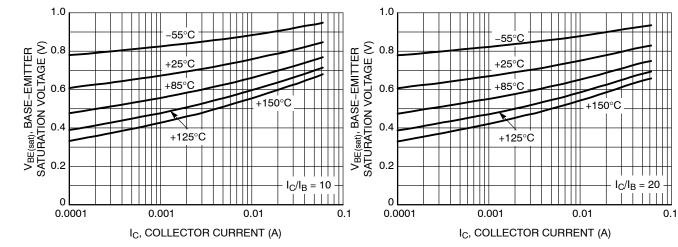


Figure 7. Base-Emitter Saturation Voltage

Figure 8. Base-Emitter Saturation Voltage

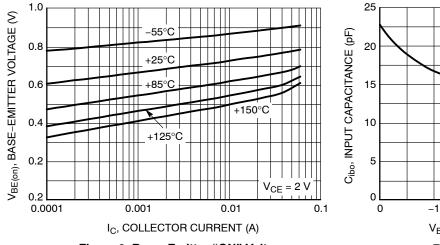


Figure 9. Base-Emitter "ON" Voltage

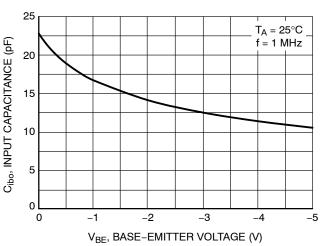


Figure 10. Input Capacitance

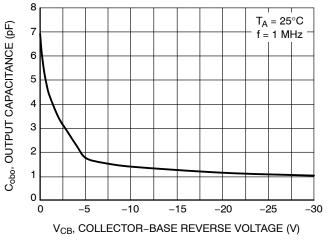


Figure 11. Output Capacitance

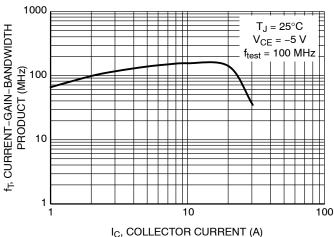


Figure 12. Current Gain Bandwidth Product

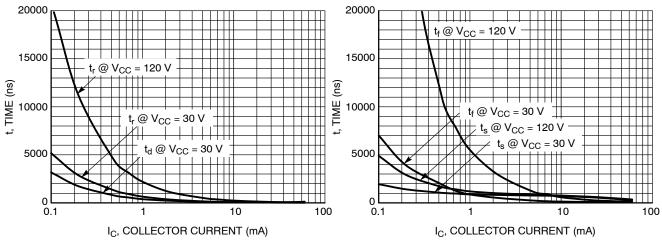


Figure 13. Turn-On Time

Figure 14. Turn-Off Time

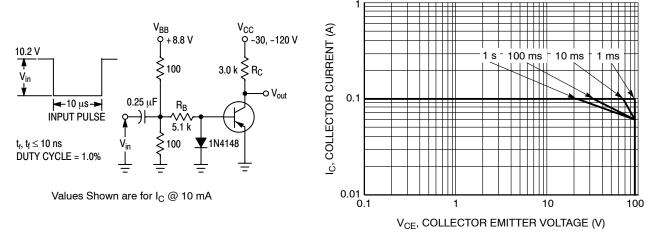


Figure 15. Switching Time Test Circuit

Figure 16. Safe Operating Area

SOT-723 CASE 631AA-01 ISSUE D

DATE 10 AUG 2009

NOTES:

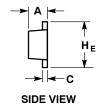
- NOTES.

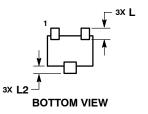
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
E	0.75	0.80	0.85	
е	0.40 BSC			
ΗE	1.15	1.20	1.25	
L	0.29 REF			
12	0.15	0.20	0.25	

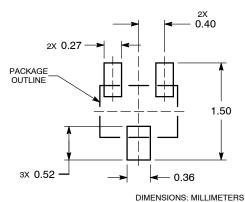

L2 0.15 0.20 0.25 **GENERIC MARKING DIAGRAM***



= Specific Device Code XX Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

-X-2X b ⊕ 0.08 X Y **TOP VIEW**



STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-723		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001