MMBTH10L,
MMBTH10-4L,
SMMBTH10-4L,
NSVMMBTH10L

VHF/UHF Transistor

NPN Silicon

Features

- S and NSV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	25	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	30	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.0	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 225 \\ 1.8 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~m}}$
Thermal Resistance, Junction to Ambient (Note 1)	$\mathrm{R}_{\text {өJA }}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation Alumina Substrate (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 300 \\ 2.4 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~m}}$
Thermal Resistance, Junction to Ambient (Note 2)	$\mathrm{R}_{\theta \mathrm{JA}}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $F R-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
2. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} .99 .5 \%$ alumina

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAMS

3EM, 3E4 = Specific Device Code
M $\quad=$ Date Code*

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MMBTH10LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
NSVMMBTH10LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
MMBTH10-4LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
MMBTH10LT3G, SMMBTH10-4LT3G	SOT-23 (Pb-Free)	$10,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$V_{(B R) C E O}$	25	-	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=100 \mu A d c, I_{E}=0\right)$	$V_{(B R) C B O}$	30	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0$)	$V_{(B R) E B O}$	3.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	100	nAdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=2.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {EBO }}$	-	-	100	nAdc

ON CHARACTERISTICS

$\left.\begin{array}{|l|c|c|c|c|c|}\hline \begin{array}{c}\text { DC Current Gain } \\ \text { (IC }=4.0 \text { mAdc, } V_{C E}=10 \text { Vdc) } \\ \text { MMBTH10LT1G, NSVMMBTH10LT1G } \\ \text { MMBTH10-4LT1G, SMMBTH10-4LT3G }\end{array} & \mathrm{h}_{\text {FE }} & & & & - \\ \hline \begin{array}{l}\text { Collector-Emitter Saturation Voltage } \\ \left(I_{C}=4.0 \text { mAdc, } \mathrm{I}_{\mathrm{B}}=0.4 \text { mAdc) }\right.\end{array} & & \begin{array}{c}60 \\ 120\end{array} & - & - & 240\end{array}\right]$

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{Mhz}\right)$ MMBTH10LT1G, NSVMMBTH10LT1G MMBTH10-4LT1G, SMMBTH10-4LT3G	f_{T}	$\begin{aligned} & 650 \\ & 800 \end{aligned}$	-	-	MHz
$\begin{aligned} & \text { Collector-Base Capacitance } \\ & \left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, f=1.0 \mathrm{MHz}\right) \end{aligned}$	C_{cb}	-	-	0.7	pF
Common-Base Feedback Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{Cr}_{\mathrm{rb}}$	-	-	0.65	pF
Collector Base Time Constant $\left(\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{f}=31.8 \mathrm{MHz}\right.$)	$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}}$	-	-	9.0	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

COMMON-BASE y PARAMETERS versus FREQUENCY
$\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{mAdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
\mathbf{y}_{ib}, INPUT ADMITTANCE

Figure 1. Rectangular Form

Figure 2. Polar Form
y_{fb}, FORWARD TRANSFER ADMITTANCE

Figure 3. Rectangular Form

Figure 4. Polar Form

MMBTH10L, MMBTH10-4L, SMMBTH10-4L, NSVMMBTH10L
TYPICAL CHARACTERISTICS

COMMON-BASE y PARAMETERS versus FREQUENCY

$$
\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{mAdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
$$

y_{rb}, REVERSE TRANSFER ADMITTANCE

Figure 5. Rectangular Form

Figure 6. Polar Form

Figure 7. Rectangular Form

Figure 8. Polar Form

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Bipolar Transistors category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MAPRST0912-50 MCH4016-TL-H MMBT5551-G MRF10120 15GN01CA-TB-E PH1214-25M MAPRST0912-350 MMBTH10-TP BFP 640F H6327 BFP 720F H6327 BFP 740F H6327 BFR 360F H6765 MRF10031 NSVF4009SG4T1G BFP 182R E7764

BFP405H6740XTSA1 MRF10350 ASMA201 BFR360FH6765XTSA1 BFP410H6327XTSA1 BFP620FH7764XTSA1
BFP720ESDH6327XTSA1 BFP720FH6327XTSA1 BFR360L3E6765XTMA1 BFP420H6433XTMA1 BFP420H6740XTSA1 BFP420H6801XTSA1 MCH4015-TL-H BF888H6327XTSA1 MMBT2222A-G BFP196WH6327XTSA1 BFP405FH6327XTSA1 BFP640ESDH6327XTSA1 BFR193L3E6327XTMA1 BFS483H6327XTSA1 NSVF4020SG4T1G NSVF6003SB6T1G MRF10005 BFP420FH6327XTSA1 BFP740FESDH6327XTSA1 BFR181E6327HTSA1 BFR181WH6327XTSA1 BFR182E6327HTSA1 BFR193E6327HTSA1 BFP181E7764HTSA1 BFP183WH6327XTSA1 BFP720H6327XTSA1 BFR182WH6327XTSA1 BFU590GX MAPR-000912-500S00

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

