# MSD1819A-RT1G, NSVMSD1819A-RT1G

# **General Purpose Amplifier Transistor**

# **NPN Silicon Surface Mount**

This NPN Silicon Epitaxial Planar Transistor is designed for general purpose amplifier applications. This device is housed in the SC-70/SOT-323 package which is designed for low power surface mount applications.

#### **Features**

- High h<sub>FE</sub>, 210-460
- Low V<sub>CE(sat)</sub>, < 0.5 V
- Moisture Sensitivity Level 1
- ESD Protection:
  - ♦ Human Body Model > 4000 V
  - ◆ Machine Model > 400 V
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### **MAXIMUM RATINGS** $(T_A = 25^{\circ}C)$

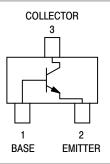
| Rating                         | Symbol               | Value | Unit |
|--------------------------------|----------------------|-------|------|
| Collector-Base Voltage         | V <sub>(BR)CBO</sub> | 60    | Vdc  |
| Collector-Emitter Voltage      | V <sub>(BR)CEO</sub> | 50    | Vdc  |
| Emitter-Base Voltage           | V <sub>(BR)EBO</sub> | 7.0   | Vdc  |
| Collector Current – Continuous | Ic                   | 100   | mAdc |
| Collector Current – Peak       | I <sub>C(P)</sub>    | 200   | mAdc |

# THERMAL CHARACTERISTICS

| Characteristic             | Symbol           | Max         | Unit |
|----------------------------|------------------|-------------|------|
| Power Dissipation (Note 1) | P <sub>D</sub>   | 150         | mW   |
| Junction Temperature       | TJ               | 150         | °C   |
| Storage Temperature Range  | T <sub>stg</sub> | -55 to +150 | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.




# ON Semiconductor®

www.onsemi.com



SC-70 (SOT-323) CASE 419 STYLE 3



# **MARKING DIAGRAM**



ZR = Device Code
M = Date Code\*
• Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation may vary depending upon manufacturing location.

#### **ORDERING INFORMATION**

| Device           | Package            | Shipping <sup>†</sup>  |
|------------------|--------------------|------------------------|
| MSD1819A-RT1G    | SC-70<br>(Pb-Free) | 3,000 /<br>Tape & Reel |
| NSVMSD1819A-RT1G | SC-70<br>(Pb-Free) | 3,000 /<br>Tape & Reel |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# MSD1819A-RT1G, NSVMSD1819A-RT1G

#### **ELECTRICAL CHARACTERISTICS**

| Characteristic                                                                                                                                        | Symbol                               | Min       | Max      | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|----------|------|
| Collector-Emitter Breakdown Voltage (I <sub>C</sub> = 2.0 mAdc, I <sub>B</sub> = 0)                                                                   | V <sub>(BR)CEO</sub>                 | 50        | -        | Vdc  |
| Collector-Base Breakdown Voltage (I <sub>C</sub> = 10 μAdc, I <sub>E</sub> = 0)                                                                       | V <sub>(BR)CBO</sub>                 | 60        | -        | Vdc  |
| Emitter-Base Breakdown Voltage ( $I_E = 10 \mu Adc, I_E = 0$ )                                                                                        | V <sub>(BR)EBO</sub>                 | 7.0       | -        | Vdc  |
| Collector-Base Cutoff Current (V <sub>CB</sub> = 20 Vdc, I <sub>E</sub> = 0)                                                                          | I <sub>CBO</sub>                     | -         | 0.1      | μΑ   |
| Collector-Emitter Cutoff Current (V <sub>CE</sub> = 10 Vdc, I <sub>B</sub> = 0)                                                                       | I <sub>CEO</sub>                     | -         | 0.1      | μΑ   |
| DC Current Gain (Note 2)<br>( $V_{CE} = 10 \text{ Vdc}$ , $I_{C} = 2.0 \text{ mAdc}$ )<br>( $V_{CE} = 2.0 \text{ Vdc}$ , $I_{C} = 100 \text{ mAdc}$ ) | h <sub>FE1</sub><br>h <sub>FE2</sub> | 210<br>90 | 340<br>- | -    |
| Collector-Emitter Saturation Voltage (Note 2) (I <sub>C</sub> = 100 mAdc, I <sub>B</sub> = 10 mAdc)                                                   | V <sub>CE(sat)</sub>                 | _         | 0.5      | Vdc  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

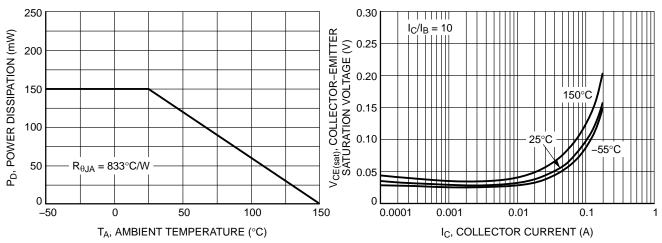



Figure 1. Derating Curve

Figure 2. Collector Emitter Saturation Voltage vs. Collector Current

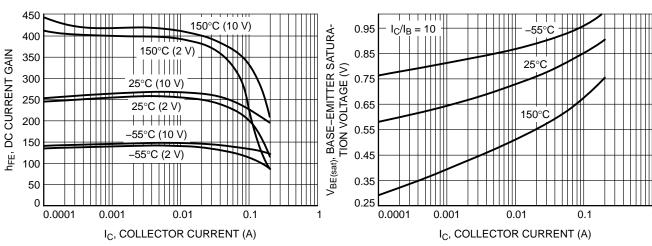
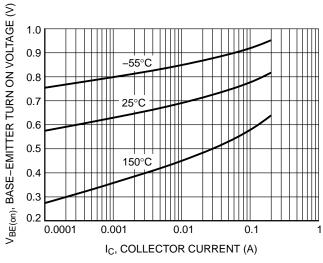
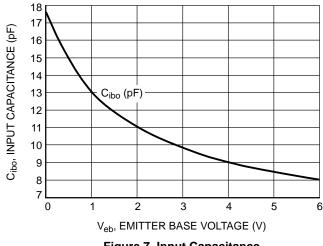




Figure 3. DC Current Gain vs. Collector Current

Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

<sup>2.</sup> Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, D.C.  $\leq$  2%.


# MSD1819A-RT1G, NSVMSD1819A-RT1G



V<sub>CE</sub>, COLLECTOR-EMITTER VOLTAGE (V) 1.2 1.0 = 100 mA50 mA 10 mA 0.8 0.6 0.4 0.2 0.000001 0.00001 0.0001 0.001 IB, BASE CURRENT (A)

Figure 5. Base Emitter Turn-On Voltage vs. **Collector Current** 

Figure 6. Collector Saturation Region



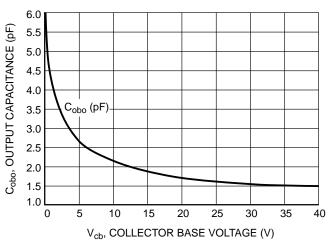



Figure 7. Input Capacitance

Figure 8. Output Capacitance

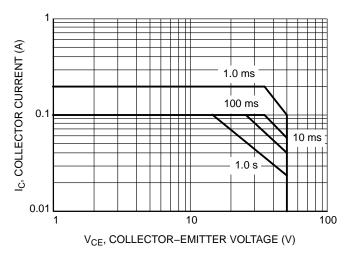
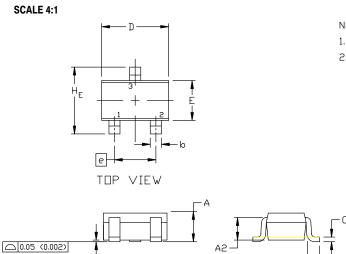
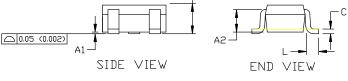



Figure 9. Safe Operating Area






SC-70 (SOT-323) **CASE 419** ISSUE R


**DATE 11 OCT 2022** 

#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

|     | MILLIMETERS |          |      |           | TNICHES  |       |
|-----|-------------|----------|------|-----------|----------|-------|
|     | MILLIMETERS |          |      | INCHES    |          |       |
| DIM | MIN.        | N□M.     | MAX. | MIN.      | N□M.     | MAX.  |
| Α   | 0.80        | 0.90     | 1.00 | 0.032     | 0.035    | 0.040 |
| A1  | 0.00        | 0.05     | 0.10 | 0.000     | 0.002    | 0.004 |
| A2  |             | 0.70 REF |      | 0.028 BSC |          |       |
| b   | 0.30        | 0.35     | 0.40 | 0.012     | 0.014    | 0.016 |
| С   | 0.10        | 0.18     | 0.25 | 0.004     | 0.007    | 0.010 |
| D   | 1.80        | 2.00     | 2.20 | 0.071     | 0.080    | 0.087 |
| E   | 1.15        | 1.24     | 1.35 | 0.045     | 0.049    | 0.053 |
| е   | 1.20        | 1.30     | 1.40 | 0.047     | 0.051    | 0.055 |
| e1  | 0.65 BSC    |          |      |           | 0.026 BS | C     |
| L   | 0.20        | 0.38     | 0.56 | 0.008     | 0.015    | 0.022 |
| HE  | 2.00        | 2.10     | 2.40 | 0.079     | 0.083    | 0.095 |





#### **GENERIC MARKING DIAGRAM**



= Specific Device Code XX

М = Date Code

= Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| 0.65 [0.025] |
|--------------|
|              |
| 1.90 [0.075] |
| 0.90 [0.035] |
| 0.70 [0.028] |

For additional information on our Pb-Free strategy and soldering details, please download the IN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

| STYLE 1:<br>CANCELLED       | STYLE 2:<br>PIN 1. ANODE<br>2. N.C.<br>3. CATHODE | STYLE 3:<br>PIN 1. BASE<br>2. EMITTER<br>3. COLLECTOR | STYLE 4:<br>PIN 1. CATHODE<br>2. CATHODE<br>3. ANODE | STYLE 5:<br>PIN 1. ANODE<br>2. ANODE<br>3. CATHODE |                           |
|-----------------------------|---------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------------------|
| STYLE 6:                    | STYLE 7:                                          | STYLE 8:                                              | STYLE 9:                                             | STYLE 10:                                          | STYLE 11:                 |
| PIN 1. EMITTER              | PIN 1. BASE                                       | PIN 1. GATE                                           | PIN 1. ANODE                                         | PIN 1. CATHODE                                     | PIN 1. CATHODE            |
| 2. BASE                     | 2. EMITTER                                        | 2. SOURCE                                             | 2. CATHODE                                           | 2. ANODE                                           | <ol><li>CATHODE</li></ol> |
| <ol><li>COLLECTOR</li></ol> | <ol><li>COLLECTOR</li></ol>                       | 3. DRAIN                                              | <ol><li>CATHODE-ANODE</li></ol>                      | 3. ANODE-CATHODE                                   | <ol><li>CATHODE</li></ol> |

| DOCUMENT NUMBER: | 98ASB42819B     | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SC-70 (SOT-323) |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

BC559C MCH4017-TL-H MMBT-2369-TR BC546/116 NJVMJD148T4G NTE16 NTE195A IMX9T110 2N4401-A 2N6728 2SA1419T-TD-H 2SB1204S-TL-E 2SC5488A-TL-H FMC5AT148 2N2369ADCSM 2N2907A 2N3904-NS 2N5769 2SC4618TLN CPH6501-TL-E US6T6TR BAX18/A52R BC556/112 IMZ2AT108 MMST8098T146 MCH6102-TL-E BC846B-13-F 2N3879 30A02MH-TL-E NTE13 NTE282 NTE323 NTE350 NTE81 JANTX2N2920L JANSR2N2907AUB CMLT3946EG TR SNSS40600CF8T1G CMLT3906EG TR GRP-DATA-JANS2N2907AUB GRP-DATA-JANS2N2222AUA MMDT3946FL3-7 2N4240 JANS2N3019 MSB30KH-13 2N2221AUB 2SD1815T-TL-E 2N6678 2N2907Ae4 JAN2N3507