NSTB60BDW1

PNP General Purpose and NPN Bias Resistor Transistor Combination

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in $8 \mathrm{~mm}, 7$ inch/3000 Unit Tape and Reel
- ESD Rating - Human Body Model: Class 1B
- Machine Model: Class B
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, common for Q_{1} and Q_{2})

Rating	Symbol	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-50	50	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-50	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-6.0	5.0	Vdc
Collector Current - Continuous	I_{C}	-150	150	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	187 (Note 1) 256 (Note 2) 1.5 (Note 1) 2.0 (Note 2)	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance -Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	670 (Note 1) 490 (Note 2)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	250 (Note 1) 385 (Note 2) 2.0 (Note 1) 3.0 (Note 2)	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance -Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	493 (Note 1) 325 (Note 2)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance -Junction-to-Lead	$\mathrm{R}_{\text {өJL }}$	$\begin{aligned} & 188 \text { (Note 1) } \\ & 208 \text { (Note 2) } \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. FR-4 @ Minimum Pad
2. FR-4 @ 1.0×1.0 inch Pad

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

71 = Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
NSTB60BDW1T1G	SOT-363 (Pb-Free)	 Reel
NSVTB60BDW1T1G	SOT-363 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Q_{1}					
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=-50 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	-50	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR)CEO }}$	-50	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=-50 \mu \mathrm{Adc}$, $\mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	-6.0	-	-	Vdc
Collector-Base Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{I}_{\text {cbo }}$	-	-	-0.1	$\mu \mathrm{A}$
Emitter-Base Cutoff Current ($\mathrm{V}_{\mathrm{EB}}=-6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{I}_{\text {EBO }}$	-	-	-0.1	$\mu \mathrm{A}$
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=-50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-5.0 \mathrm{mAdc}\right)($ Note 3$)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-	-0.5	Vdc
DC Current Gain ($\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}$) (Note 3)	$\mathrm{h}_{\text {FE }}$	120	-	560	-
```Transition Frequency \(\left(\mathrm{V}_{\mathrm{CE}}=-12 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{f}=100 \mathrm{MHz}\right)\)```	$\mathrm{f}_{\mathrm{T}}$	-	140	-	MHz
Output Capacitance ( $\mathrm{V}_{\mathrm{CB}}=-12 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0 \mathrm{Adc}, \mathrm{f}=1.0 \mathrm{MHz}$ )	$\mathrm{C}_{\text {OB }}$	-	3.5	-	pF

$\mathbf{Q}_{2}$

Collector-Base Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage   $\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)($ Note 3)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	50	-	-	Vdc
Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	100	nAdc
Collector-Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{I}_{\mathrm{CEO}}$	-	-	500	nAdc
Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\mathrm{EBO}}$	-	-	0.13	mAdc
Collector-Emitter Saturation Voltage   $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{~mA}\right)($ Note 3)	$\mathrm{V}_{\mathrm{CE}(\text { sat })}$	-	-	0.25	Vdc
DC Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)(\mathrm{Note} 3)$	$\mathrm{h}_{\mathrm{FE}}$	80	-	-	
Output Voltage (on) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)($ Note 3)	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.2	Vdc
Output Voltage (off) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)($ Note 3)	$\mathrm{V}_{\mathrm{OH}}$	4.9	-	-	Vdc
Input Resistor (Note 3)	R 1	15.4	22	28.6	$\mathrm{k} \Omega$
Resistor Ratio (Note 3)	$\mathrm{R} 2 / \mathrm{R} 1$	1.70	2.13	2.55	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse Test: Pulse Width $<300 \mu \mathrm{~s}$, Duty Cycle $<2.0 \%$

## NSTB60BDW1

TYPICAL ELECTRICAL CHARACTERISTICS - PNP Transistor


Figure 1. Normalized DC Current Gain


Figure 3. Current-Gain - Bandwidth Product


Figure 5. Output Admittance


Figure 2. "Saturation" and "On" Voltages


Figure 4. Capacitances


Figure 6. Base Spreading Resistance


Figure 7. Maximum Collector Voltage versus Collector Current


Figure 9. Output Capacitance


Figure 8. DC Current Gain


Figure 10. Output Current versus Input Voltage


Figure 11. Input Voltage versus Output Current


RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					



XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.


## STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] rights of others.

## SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4:   PIN 1. CATHODE   2. CATHODE   3. COLLECTOR   4. EMITTER   5. BASE   6. ANODE	STYLE 5:   PIN 1. ANODE   2. ANODE   3. COLLECTOR   4. EMITTER   5. BASE   6. CATHODE	STYLE 6 :   PIN 1. ANODE 2   2. $\mathrm{N} / \mathrm{C}$   3. CATHODE 1   4. ANODE 1   5. N/C   6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. $\mathrm{N} / \mathrm{C}$	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001


[^0]:    ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

