ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET - N-Channel Shielded Gate PowerTrench®

150 V, 7.3 mΩ, 101 A

NTB7D3N15MC

Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(on)} = 7.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 62 \text{ A}$
- 50% Lower Qrr than other MOSFET Suppliers
- Lowers Switching Noise/EMI
- 100% UIL Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

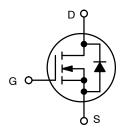
Typical Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	150	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current R _{θJC} (Note 2)	Steady State	T _C = 25°C	I _D	101	Α
Power Dissipation $R_{\theta JC}$ (Note 2)	State	_	P _D	166	W
Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State	T _A = 25°C	I _D	15.2	Α
Power Dissipation R _{θJA} (Notes 1, 2)	State		P _D	3.75	W
Pulsed Drain Current	T _C = 25°	°C, t _p = 100 μs	I _{DM}	488	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy (I _L = 20 A _{pk} , L = 3 mH)			E _{AS}	600	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 1 in², 2 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	7.3 mΩ @ 10 V	101 A

N-CHANNEL MOSFET

MARKING

DIAGRAM 4 Drain NTB7D3 N15MC AYWWZZ CASE 418AJ 1 2 3 Gate Drain Source

NTB7D3N15MC = Specific Device Code

A = Assembly Location

ORDERING INFORMATION

Device	Package	Shipping [†]
NTB7D3N15MC	D ² PAK (Pb-Free)	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ hetaJC}$	0.9	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{ hetaJA}$	40	

Parameter	Symbol	Test Condit	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		150			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			71		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 120 V	T _J = 25°C			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 342 μA	2.5		4.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 342 μA, ref	to 25°C		-7.3		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 62 A			6.0	7.3	~ 0
		V _{GS} = 8 V, I _D = 31 A			6.5	8.4	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 62 A			119		S
CHARGES, CAPACITANCES & GATE RESIS	STANCE						
Input Capacitance	C _{ISS}				4250		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75 V			1250		pF
Reverse Transfer Capacitance	C _{RSS}				15		
Gate-Resistance	R_{G}				0.8	1.6	Ω
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V}; I_{D} = 62 \text{ A}$ $V_{DD} = 75 \text{ V}, V_{GS} = 0 \text{ V}$			53		
Threshold Gate Charge	Q _{G(TH)}				14		nC
Gate-to-Source Charge	Q_{GS}				23		
Gate-to-Drain Charge	Q_{GD}				8.5		
Plateau Voltage	V_{GP}				5.8		V
Output Charge	Q _{OSS}				133		nC
SWITCHING CHARACTERISTICS (Note 3)							
Turn-On Delay Time	t _{d(ON)}				27		
Rise Time	t _r	V _{GS} = 10 V, V _{DD}	₀ = 75 V,		8.5		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 62 \text{ A}, R_G = 4.7 \Omega$			33		ns
Fall Time	t _f				5.8		
DRAIN-SOURCE DIODE CHARACTERISTIC	cs						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = 62 \text{ A}$	T _J = 25°C		0.93	1.2	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, V _{DD}	= 75 V		55		ns
Reverse Recovery Charge	Q_{RR}	$dI_S/dt = 300 \text{ A/}\mu\text{s}, I_S = 62 \text{ A}$			247		nC
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, V_{DD} = 75 \text{ V}$ $dI_S/dt = 1000 \text{ A}/\mu\text{s}, I_S = 62 \text{ A}$			50		ns
Reverse Recovery Charge	Q _{RR}				720		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

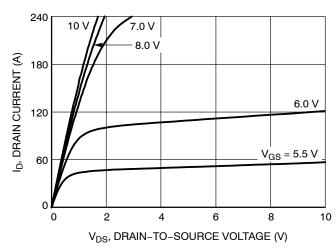


Figure 1. On-Region Characteristics

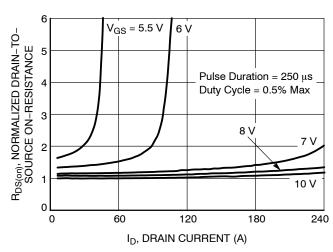


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

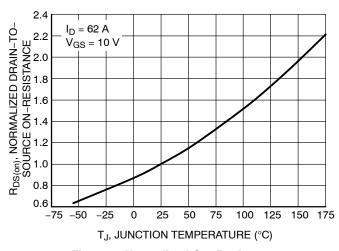


Figure 3. Normalized On–Resistance vs. Junction Temperature

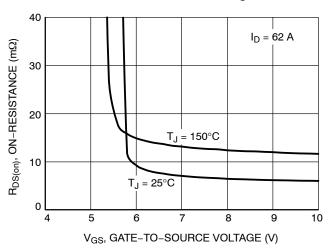


Figure 4. On-Resistance vs. Gate-to-Source Voltage

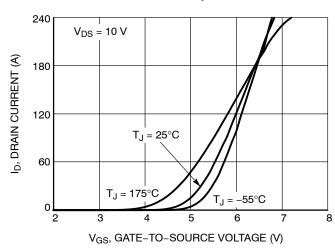


Figure 5. Transfer Characteristics

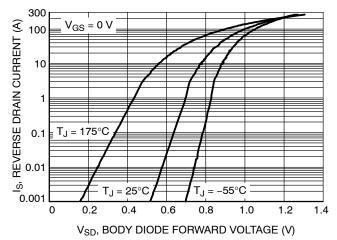


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS

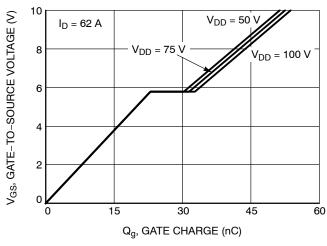


Figure 7. Gate Charge Characteristics

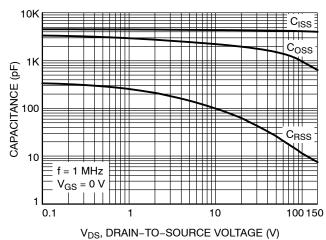


Figure 8. Capacitance vs. Drain-to-Source Voltage

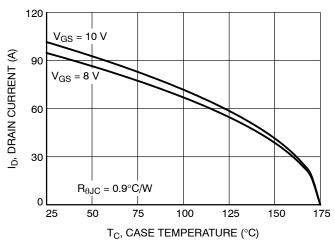


Figure 9. Drain Current vs. Case Temperature

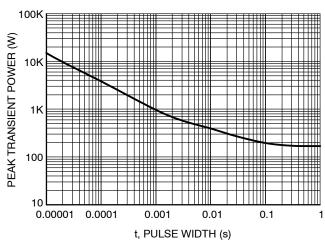


Figure 10. Peak Power

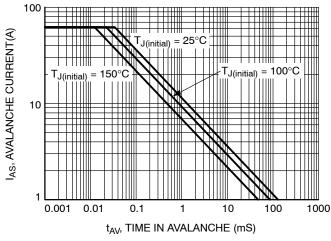


Figure 11. Unclamped Inductive Switching Capability

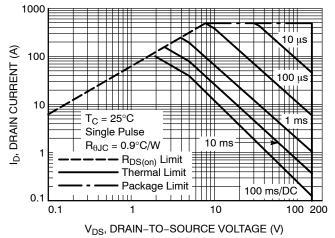


Figure 12. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS

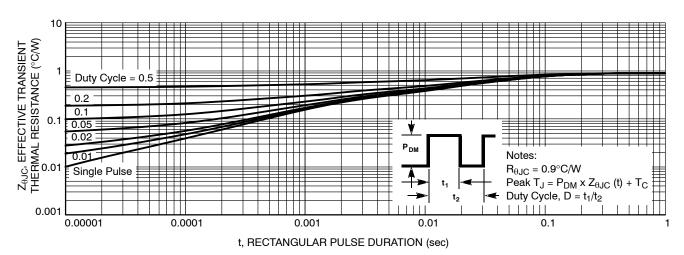
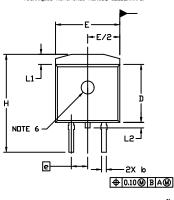


Figure 13. Transient Thermal Impedance

PACKAGE DIMENSIONS


D²PAK-3 (TO-263, 3-LEAD)

CASE 418AJ ISSUE E

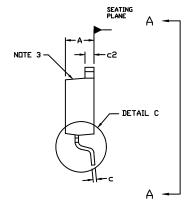
NOTES

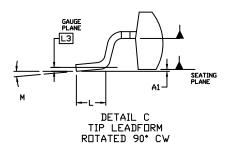
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE.
 THESE DIMENSIONS ARE MEASURED AT THE DUTERMOST
 EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... OPTIONAL CONSTRUCTION FEATURE CALL DUTS.

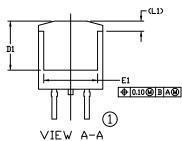
	INCHES		MILLIN	MILLIMETERS		
DIM	MIN.	MAX.	MIN.	MAX.		
Α	0.160	0.190	4.06	4.83		
A1	0.000	0.010	0.00	0.25		
b	0.020	0.039	0.51	0.99		
С	0.012	0.029	0.30	0.74		
c2	0.045	0.065	1.14	1.65		
D	0.330	0.380	8.38	9.65		
D1	0.260		6.60			
Ε	0.380	0.420	9.65	10.67		
E1	0.245		6.22			
e	0.100 BSC		2.54	54 BSC		
Н	0.575	0.625	14.60	15.88		
L	0.070	0.110	1.78	2.79		
L1		0.066	-	1.68		
L2		0.070		1.78		
L3	0.010	BSC	0.25	BSC		
М	-8*	8•	-8*	8•		

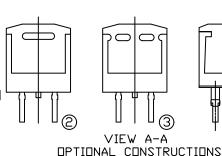
RECOMMENDED MOUNTING FOOTPRINT

0.436


0.653


2x 0.063


0.366


0.169

0.100 PITCH

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor newses no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semicond

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E

DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691
TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960

NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF

DMP22D4UFO-7B DMN1006UCA6-7