Power MOSFET

30 V, 41 A, Single N-Channel, DPAK/IPAK

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Three Package Variations for Design Flexibility
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

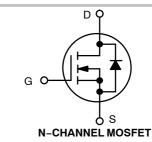
Applications

- CPU Power Delivery
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Pa	Symbol	Value	Unit		
Drain-to-Source Vo	V _{DSS}	30	V		
Gate-to-Source Vo	Gate-to-Source Voltage				V
Continuous Drain		T _A = 25°C	Ι _D	12.7	Α
Current R _{θJA} (Note 1)		T _A = 100°C		9.0	
Power Dissipation R _{θJA} (Note 1)		T _A = 25°C	P_{D}	2.56	W
Continuous Drain		T _A = 25°C	Ι _D	9.4	Α
Current R _{0JA} (Note 2)	Steady State	T _A = 100°C		6.6	
Power Dissipation R _{θJA} (Note 2)	State	T _A = 25°C	P_{D}	1.38	W
Continuous Drain		$T_C = 25^{\circ}C$	Ι _D	41	Α
Current R _{θJC} (Note 1)		T _C = 100°C		29	
Power Dissipation R _{θJC} (Note 1)		T _C = 25°C	P_{D}	26.3	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	150	Α
Current Limited by F	Package	T _A = 25°C	I _{DmaxPkg}	40	Α
Operating Junction Temperature	Operating Junction and Storage Temperature				
Source Current (Bo	Source Current (Body Diode)				
Drain to Source dV/	dV/dt	6.0	V/ns		
Single Pulse Drain-to-Source Avalanche Energy (T_J = 25°C, V_{DD} = 24 V, V_{GS} = 10 V, I_L = 19 A_{pk} , L = 0.1 mH, R_G = 25 Ω)			EAS	18	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

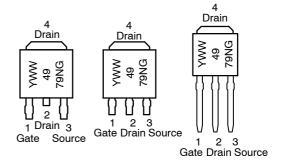
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
30 V	9.0 mΩ @ 10 V	41 A	
	19 mΩ @ 4.5 V	41 A	



CASE 369AA **DPAK** (Bent Lead) STYLE 2

CASE 369AC 3 IPAK (Straight Lead) (Straight Lead

CASE 369D **IPAK** DPAK)

MARKING DIAGRAMS & PIN ASSIGNMENTS

= Year WW = Work Week 4979N = Device Code = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	5.7	°C/W
Junction-to-TAB (Drain)	$R_{\theta JC-TAB}$	4.3	
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	58.6	
Junction-to-Ambient - Steady State (Note 4)	$R_{ heta JA}$	108.6	

Drain-to-Source Breakdown Voltage V(BR)DSS VGS = 0 V, ID = 250 μA 30 V VGS = 0 V, ID = 250 μA 30 V VGS = 0 V, ID = 250 μA 30 V VGS = 0 V, ID = 250 μA 30 V VGS = 0 V, ID = 250 μA 30 V VGS = 0 V, ID = 250 μA 17 VGS = 0 V, ID = 250 μA 17 VGS = 0 V, ID = 250 μA 17 VGS = 0 V, ID = 250 μA 1.0 LO = 10 VGS = 24 V VGS	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage Temperature Coefficient	OFF CHARACTERISTICS							
Temperature Coefficient Temperature Coeffici	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Sate - to - Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V ±100 nA	Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				17		mV/°C
Sate - to - Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V ±100 nA	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	
ON CHARACTERISTICS (Note 5)			V _{DS} = 24 V	T _J = 125°C			10	μΑ
Negative Threshold Voltage V _{GS(TH)} V _{GS} = V _{DS} , I _D = 250 μA 1.5 1.8 2.5 V	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	_S = ±20 V			±100	nA
Negative Threshold Temperature VGS(TH)/TJ	ON CHARACTERISTICS (Note 5)							
Coefficient Mode Invited By Section By Se	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.5	1.8	2.5	٧
ID = 15 A 6.9 MS VGS = 4.5 V ID = 30 A 13.6 19 MS ID = 15 A 13.2 MS ID = 15 A 13.6 19 MS ID = 15 A ID =	Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.5		mV/°C
VGS = 4.5 V ID = 30 A 13.6 19 ID = 15 A 13.2	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		6.9	9.0	
VGS = 4.5 V ID = 30 A 13.6 19				I _D = 15 A		6.9		
Forward Transconductance g_{FS} $V_{DS} = 1.5 \text{ V}, I_D = 30 \text{ A}$ 36 S $CHARGES, CAPACITANCES AND GATE RESISTANCE$ Input Capacitance C_{ISS} Output Capacitance C_{OSS} Reverse Transfer Capacitance C_{RSS} Total Gate Charge $Q_{G(TOT)}$ Threshold Gate Charge Q_{GS} Gate-to-Drain Charge Q_{GD} Total Gate Charge Q_{GTOT} Total Gate Charge Q_{GTOT} Total Gate Charge Q_{GS} Q_{GS} Q_{GTOT} Q_{GS}			V _{GS} = 4.5 V	I _D = 30 A		13.6	19	mΩ
CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance C _{ISS} Output Capacitance C _{OSS} Reverse Transfer Capacitance C _{RSS} Total Gate Charge Q _{G(TOT)} Threshold Gate Charge Q _{G(TH)} Gate-to-Source Charge Q _{GS} Gate-to-Drain Charge Q _{GD} Total Gate Charge Q _G Gate-to-Drain Charge Q _G Total Gate Charge Q _{G(TOT)} V _{GS} = 10 V, V _{DS} = 15 V, I _D = 30 A 16.5 NC SWITCHING CHARACTERISTICS (Note 6) Turn-On Delay Time t _r Rise Time t _r V _{GS} = 4.5 V, V _{DS} = 15 V, V _{DS}				I _D = 15 A		13.2		1
Input Capacitance	Forward Transconductance	9FS	V _{DS} = 1.5 V, I	_D = 30 A		36		S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES, CAPACITANCES AND GATE	RESISTANCE						
Reverse Transfer Capacitance C_{RSS} 180 Total Gate Charge $Q_{G(TOT)}$ Threshold Gate Charge $Q_{G(TH)}$ Gate—to—Source Charge Q_{GS} Gate—to—Drain Charge Q_{GD} Total Gate Charge Q_{GD} Total Gate Charge Q_{GTOT} Turn—On Delay Time Q_{GTOT} Rise Time Q_{GS} Turn—On Delay Time Q_{GTOT} Tur	Input Capacitance	C _{ISS}				837		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 M	Hz, V _{DS} = 15 V		347		pF
Threshold Gate Charge $Q_{G(TH)}$ Gate—to—Source Charge Q_{GS} Gate—to—Drain Charge Q_{GD} Total Gate Charge $Q_{G(TOT)}$ $Q_{G(TOT)}$ $Q_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 30 \text{ A}$ 1.42 1.42 1.42 1.42 1.42 1.42 1.48 Total Gate Charge $Q_{G(TOT)}$ SWITCHING CHARACTERISTICS (Note 6) Turn—On Delay Time $t_{d(ON)}$ Rise Time t_{r} $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, V_{DS} $	Reverse Transfer Capacitance	C _{RSS}				180		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				9.0		
Gate-to-Source Charge Q _{GS} 2.8 Gate-to-Drain Charge Q _{GD} 4.8 Total Gate Charge Q _G (TOT) V _{GS} = 10 V, V _{DS} = 15 V, I _D = 30 A 16.5 nC SWITCHING CHARACTERISTICS (Note 6) Turn-On Delay Time t _d (ON) 10 10 Rise Time t _r V _{GS} = 4.5 V, V _{DS} = 15 V,	Threshold Gate Charge	Q _{G(TH)}	V 45.V.V	45.77.1 00.4		1.42		nC
Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 30 \text{ A}$ 16.5 nC SWITCHING CHARACTERISTICS (Note 6) Turn-On Delay Time $t_{d(ON)}$ 10 Rise Time t_r $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, 27$ ns	Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} =$	15 V, I _D = 30 A		2.8		
SWITCHING CHARACTERISTICS (Note 6) Turn-On Delay Time t _{d(ON)} 10 Rise Time t _r V _{GS} = 4.5 V, V _{DS} = 15 V, 27	Gate-to-Drain Charge	Q_{GD}				4.8		1
Turn–On Delay Time $ \begin{matrix} t_{d(ON)} \\ \hline \\ Rise Time \end{matrix} $	Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 30 A			16.5		nC
Rise Time t _r V _{GS} = 4.5 V, V _{DS} = 15 V,	SWITCHING CHARACTERISTICS (Note	6)						
V _{GS} = 4.5 V, V _{DS} = 15 V,	Turn-On Delay Time	t _{d(ON)}				10		
Turn–Off Delay Time $t_{d(OFF)}$ $I_D = 15 \text{ A}, R_G = 3.0 \Omega$ 13.3	Rise Time	t _r	$V_{GS} = 4.5 \text{ V, V}_{I}$	_{os} = 15 V,		27		1
	Turn-Off Delay Time	t _{d(OFF)}	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$			13.3		d ns

^{5.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

Fall Time

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

^{6.} Switching characteristics are independent of operating junction temperatures.
7. Assume terminal length of 110 mils.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Note	e 6)						
Turn-On Delay Time	t _{d(ON)}				6.5		
Rise Time	t _r	V _{GS} = 10 V, V _{DS}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω		20.2		
Turn-Off Delay Time	t _{d(OFF)}	I _D = 15 A, R _G =	= 3.0 Ω		17.2		ns
Fall Time	t _f				4.2		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}.$ $T_J = 25^{\circ}\text{C}$			0.91	1.1	.,
		$V_{GS} = 0 \text{ V},$ $I_S = 30 \text{ A}$ $I_J = 25^{\circ}\text{C}$ $T_J = 125^{\circ}\text{C}$	T _J = 125°C		0.82		V
Reverse Recovery Time	t _{RR}	<u> </u>			20.8		
Charge Time	t _a	V _{GS} = 0 V, dIS/dt =	= 100 A/μs,		9.8		ns
Discharge Time	t _b	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$			11		
Reverse Recovery Charge	Q _{RR}				8.0		nC
PACKAGE PARASITIC VALUES							
Source Inductance (Note 7)	L _S				2.85		nΗ
Drain Inductance, DPAK	L _D	T _A = 25°C			0.0164		
Drain Inductance, IPAK (Note 7)	L _D				1.88		
Gate Inductance (Note 7)	L _G				4.9		
Gate Resistance	R_{G}				1.0	2.2	Ω

- 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.
 6. Switching characteristics are independent of operating junction temperatures.
 7. Assume terminal length of 110 mils.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD4979NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD4979N-1G	IPAK (Pb-Free)	75 Units / Rail
NTD4979N-35G	IPAK Trimmed Lead (Pb-Free)	75 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL PERFORMANCE CURVES

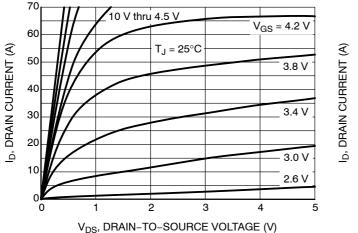
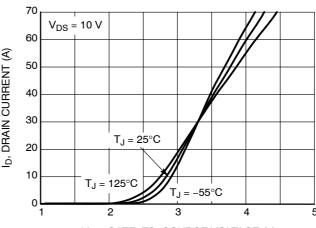



Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics

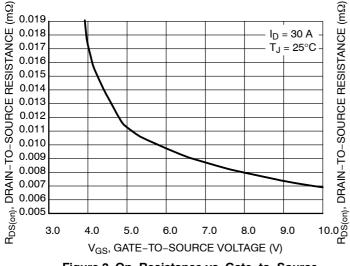


Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

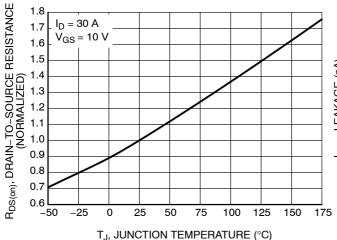


Figure 5. On–Resistance Variation with Temperature

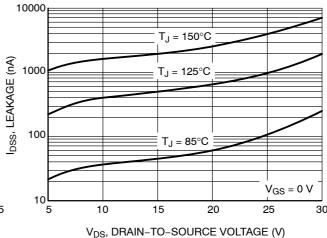
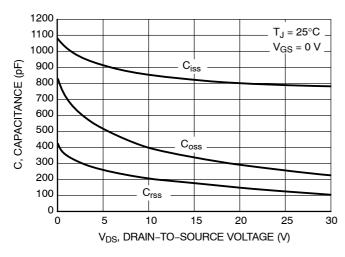
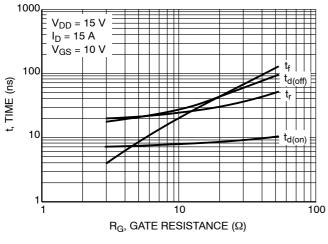



Figure 6. Drain-to-Source Leakage Current vs. Voltage


TYPICAL PERFORMANCE CURVES

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Q_T 9 8 7 6 5 \overline{Q}_{gr} Q_{gs} 4 3 $I_D = 30 A$ $T_J = 25^{\circ}C$ 2 $V_{DD} = 15 V$ $V_{GS} = 10 A$ 0 0 2 3 8 9 10 11 12 13 14 15 16 17 18 Q_G, TOTAL GATE CHARGE (nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

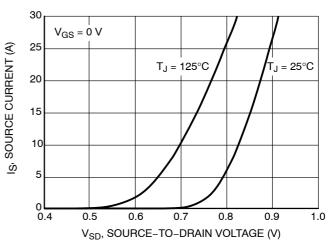
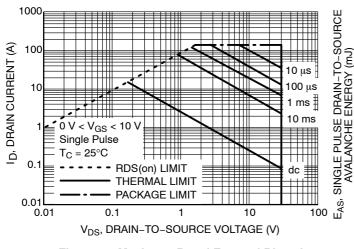
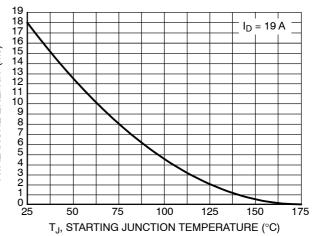



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current



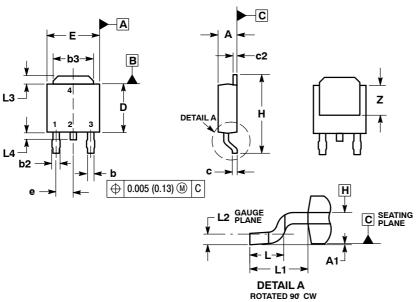

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA **ISSUE B**

- NOTES:

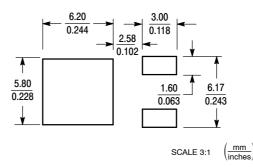
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

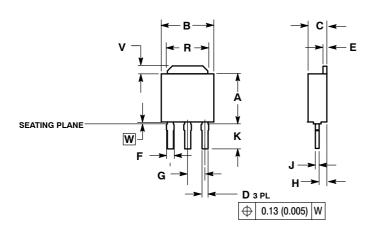

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74 REF		
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
7	0 155		3.93		

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

- 4. DRAIN

SOLDERING FOOTPRINT*

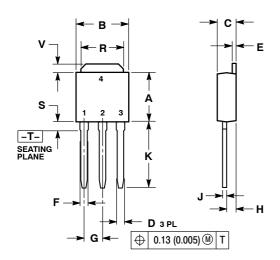


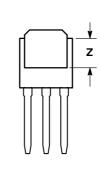
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

3 IPAK, STRAIGHT LEAD

CASE 369AC ISSUE O




NOTES

- 1.. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- SEATING PLANE IS ON TOP OF DAMBAR POSITION.
- DIMENSION A DOES NOT INCLUDE DAMBAR POSITION OR MOLD GATE.

	INC	HES	MILLIN	ETERS
DIM	MIN MAX		MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.043	0.94	1.09
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
7	0.018	0.023	0.46	0.58
K	0.134	0.142	3.40	3.60
R	0.180	0.215	4.57	5.46
٧	0.035	0.050	0.89	1.27
W	0.000	0.010	0.000	0.25

IPAK CASE 369D **ISSUE C**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2:

PIN 1. GATE 2. DRAIN

- SOURCE DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237

2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T)

405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G

614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U

JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI APT1201R6BVFRG