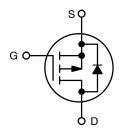
MOSFET – Power, P-Channel, SOT-223

-5.2 A, -30 V

Features

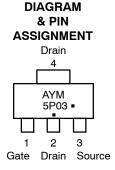
- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Miniature SOT-223 Surface Mount Package
- Avalanche Energy Specified
- AEC-Q101 Qualified and PPAP Capable NVF5P03T3G
- These Devices are Pb-Free and are RoHS Compliant

Applications


- DC-DC Converters
- Power Management
- Motor Controls
- Inductive Loads
- Replaces MMFT5P03HD

ON Semiconductor®

http://onsemi.com


-5.2 AMPERES, -30 VOLTS $R_{DS(on)} = 100 \text{ m}\Omega$

P-Channel MOSFET

SOT-223 CASE 318E STYLE 3

MARKING

A = Assembly Location

Y = Year

M = Date Code

5P03 = Specific Device Code

■ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

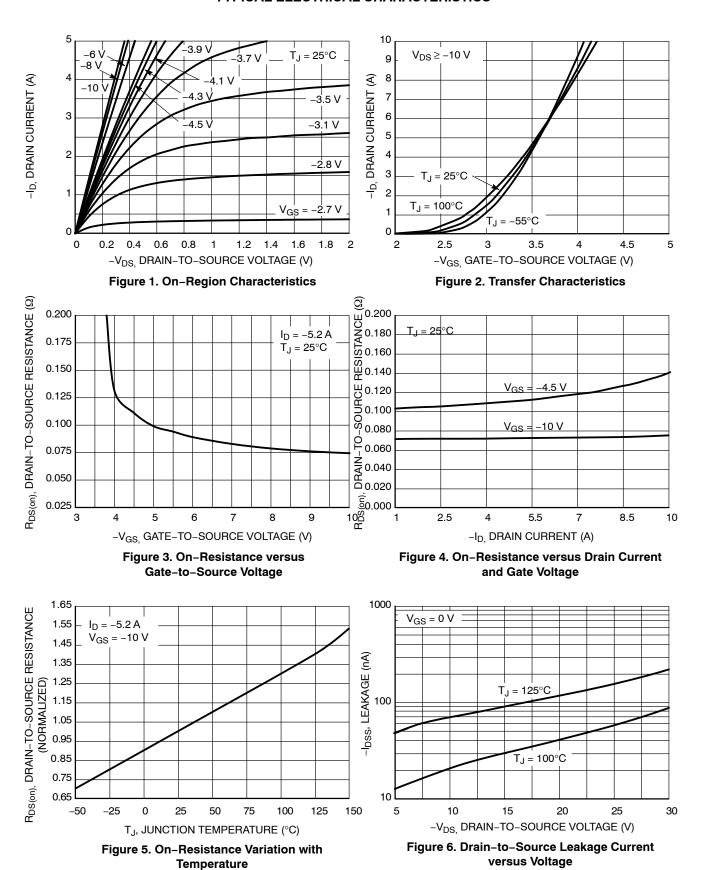
Device	Package	Shipping [†]
NTF5P03T3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NVF5P03T3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\label{eq:maximum RATINGS} \begin{tabular}{ll} MAXIMUM RATINGS ($T_J=25^{\circ}C$ unless otherwise noted) \\ \begin{tabular}{ll} Negative sign for P-Channel devices omitted for clarity \\ \end{tabular}$

Rating			Max	Unit
Drain-to-Source Voltage		V _{DSS}	-30	V
Drain-to-Gate Voltage	$e (R_{GS} = 1.0 M\Omega)$	V_{DGR}	-30	V
Gate-to-Source Voltage	ge – Continuous	V _{GS}	± 20	V
$ \begin{array}{lll} 1 \; \text{sq in} & & \text{Thermal Resistance - Junction to Ambient} \\ \text{FR-4 or G-10 PCB} & & \text{Total Power Dissipation } \textcircled{0} \; T_{A} = 25^{\circ}\text{C} \\ \text{Linear Derating Factor} \\ \text{Drain Current - Continuous } \textcircled{0} \; T_{A} = 25^{\circ}\text{C} \\ \text{Continuous } \textcircled{0} \; T_{A} = 70^{\circ}\text{C} \\ \text{Pulsed Drain Current (Note 1)} \\ \end{array} $		R _{THJA} P _D I _D I _D	40 3.13 25 -5.2 -4.1 -26	°C/W Watts mW/°C A A
Minimum FR-4 or G-10 PCB 10 seconds	Thermal Resistance – Junction to Ambient Total Power Dissipation @ T_A = 25°C Linear Derating Factor Drain Current – Continuous @ T_A = 25°C Continuous @ T_A = 70°C Pulsed Drain Current (Note 1)	R _{THJA} P _D I _D I _D	80 1.56 12.5 -3.7 -2.9 -19	°C/W Watts mW/°C A A A
Operating and Storage Temperature Range		T _J , T _{stg}	– 55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = -30 Vdc, V_{GS} = -10 Vdc, Peak I_L = -12 Apk, L = 3.5 mH, R_G = 25 Ω)		E _{AS}	250	mJ

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


^{1.} Repetitive rating; pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ELECTRICAL CHARACTERISTI	CS (T _A = 25°C unless otherwise noted	1)	T	T	ı	ı
Drain-to-Source Breakdown Voltage (Cpk ≥ 2.0) (Notes 2 and 4) (V _{GS} = 0 Vdc. lp = −250 µAdo; Perperture Coefficient (Positive)	Charac	Symbol	Min	Тур	Max	Unit	
(Y _{GS} = 0 Vdc, Ip = -250 µAdc) Temperature Coefficient (Postive) Zero Gate Voltage Drain Current (Y _{GS} = -24 Vdc, V _{GS} = 0 Vdc) (Y _{GS} = -24 Vdc, V _{GS} = 0 Vdc) (Y _{GS} = -26 Vdc, V _{GS} = 0 Vdc) (Y _{GS} = -26 Vdc, V _{GS} = 0 Vdc) (Y _{GS} = -26 Vdc, V _{GS} = 0 Vdc) (Y _{GS} = -26 Vdc, V _{GS} = 0 Vdc) Zero Gate-Body Leakage Current (Y _{GS} = -26 Vdc, V _{GS} = 0 Vdc) (Y _{GS} = -26 Vdc, V _{GS} = 0 Vdc) Zero Threshold Voltage (Cpk ≥ 2.0) (Notes 2 and 4) (Y _{GS} = -10 Vdc, Ip = -36 Jdcd) (Y _{GS} = -10 Vdc, Ip = -36 Jdcd) (Y _{GS} = -10 Vdc, Ip = -26 Jdcd) (Y _{GS} = -10 V	OFF CHARACTERISTICS						
Temperature Coefficient (Positive) Zero Gate Voltage Drain Current (Yogs = 24 Vdc, Yogs = 0 Vdc) (Yogs = 25 Vdc, Yogs = 0 Vdc) (Yogs = 25 Vdc, Yogs = 0 Vdc) (Yogs = 25 Vdc, Yogs = 0 Vdc) (Yogs = 24 Vdc, Yogs = 0 Vdc) (Yogs = 25 Vdc, Yogs = 0 Vdc) (Yogs = 15 Vdc, Yogs = 0 Vdc) (Yogs = 25 Vdc, Yogs = 0 Vdc) (Yogs = 25 Vdc, Yogs = 0 Vdc) (Yogs = 15 Vdc, Yogs = 0 Vdc) (Yogs = 25 Vdc, Yogs = 0 Vdc) (Yogs = 15 Vdc, Yogs = 0 Vdc) (Yogs = 0 V				30			Vdc
(V _{DS} = -24 Vdc, V _{SS} = 0 Vdc) (V _{DS} = -25 Vdc, V _{DS} = 0 Vdc) (V _{DS} = ± 20 Vdc, V _{DS} = 0 Vdc) 1 dgsS	, ,			-28	-	mV/°C	
Concess 2 O V dc, Vos = 0 V dc) Concess Conces	$(V_{DS} = -24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	= 125°C)	I _{DSS}	- -	- -		μAdc
			I _{GSS}	-	-	± 100	nAdc
(V _{DS} = V _{GS} , I _D = −250 μAdc) -1.0	ON CHARACTERISTICS (Note 2)						
	$(V_{DS} = V_{GS}, I_{D} = -250 \mu Adc)$	·	V _{GS(th)}				
CVDS = -15 Vdc, ID = -2.0 Adc DYNAMIC CHARACTERISTICS Input Capacitance CVDS = -25 Vdc, VGS = 0 V, f = 1.0 MHz Transfer Capacitance CTOS COSS -	$(V_{GS} = -10 \text{ Vdc}, I_D = -5.2 \text{ Adc})$	ce (Cpk ≥ 2.0) (Notes 2 and 4)	R _{DS(on)}	-			mΩ
$ \begin{array}{ c c c c } \hline \text{Input Capacitance} & (V_{DS} = -25 \text{Vdc}, V_{QS} = 0 \text{V}, \\ f = 1.0 \text{MHz}) & C_{lgs} & - & 500 & 950 \\ \hline \hline \text{Coss} & - & 153 & 440 \\ \hline \text{Crass} & - & 58 & 140 \\ \hline \hline \text{SWITCHING CHARACTERISTICS} & (Note 3) \\ \hline \hline \text{Turn-On Delay Time} & (V_{DD} = -15 \text{Vdc}, I_D = -4.0 \text{Adc}, V_{QS} = 10 \text{Vdc}, R_G = 6.0 \Omega) & t_d(lon) & - & 10 & 24 \\ \hline \text{Turn-Off Delay Time} & (V_{DD} = -15 \text{Vdc}, I_D = -2.0 \text{Adc}, V_{QS} = 10 \text{Vdc}, R_G = 6.0 \Omega) & t_d(lon) & - & 10 & 24 \\ \hline \text{Turn-Off Delay Time} & (V_{DD} = -15 \text{Vdc}, I_D = -2.0 \text{Adc}, V_{QS} = 10 \text{Vdc}, R_G = 6.0 \Omega) & (Note 2) & t_d(lon) & - & 16 & 38 & 94 \\ \hline \text{Turn-Off Delay Time} & (V_{DD} = -15 \text{Vdc}, I_D = -2.0 \text{Adc}, V_{QS} = -10 \text{Vdc}, R_G = 6.0 \Omega) & (Note 2) & t_d(lon) & - & 16 & 38 & 18 \\ \hline \text{Turn-Off Delay Time} & t_d(lon) & - & 16 & 38 & 18 \\ \hline \text{Turn-Off Delay Time} & t_d(lon) & - & 16 & 38 & 18 \\ \hline \text{Turn-Off Delay Time} & t_d(lon) & - & 23 & 60 & 10 \\ \hline \text{Turn-Off Delay Time} & t_d(lon) & - & 23 & 60 & 10 \\ \hline \text{Turn-Off Delay Time} & t_d(lon) & - & 23 & 60 & 10 \\ \hline \text{Turn-Off Delay Time} & t_d(lon) & - & 15 & 38 & 10 \\ \hline \text{Turn-Off Delay Time} & t_d(lon) & - & 15 & 38 & 10 \\ \hline \text{Gate Charge} & (V_{DS} = -24 \text{Vdc}, I_D = -4.0 \text{Adc}, V_{GS} = 0 \text{Vdc}, Q_T & - & 15 & 38 & 10 \\ \hline \text{Q1} & - & 1.6 & - & & & & & & & & & & & & & & & & & $			9fs	2.0	3.9	_	Mhos
Dutput Capacitance Transfer Capacitance	DYNAMIC CHARACTERISTICS			•	•		•
Output Capacitance Coss - 153 440	Input Capacitance		C _{iss}	-	500	950	pF
$ \begin{array}{ c c c c c c c c } \hline Transfer Capacitance & & & & & & & & & & & & & & & & & & &$	Output Capacitance	f = 1.0 MHz)	C _{oss}	_	153	440	- - -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transfer Capacitance		-	_	58	140	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS	S (Note 3)	L	L	· L	I	l .
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		t _{d(on)}	_	10	24	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		t _r	-	33	48	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	, , , ,	t _{d(off)}	-	38	94	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time			_	20	92	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		t _{d(on)}	_	16	38	ns
	Rise Time			_	45	110	
	Turn-Off Delay Time	- , , , ,	t _{d(off)}	_	23	60	
$V_{GS} = -10 \text{ Vdc) (Note 2)} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time		t _f	_	24	80	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Charge		Q _T	_	15	38	nC
			Q ₁	_	1.6	-	1
			Q_2	_	3.5	_	
			Q3	_	2.6	-]
	SOURCE-DRAIN DIODE CHARA	CTERISTICS		•	•		•
	Forward On-Voltage	(I _S = -4.0 Adc, V _{GS} = 0 Vdc)	V _{SD}				Vdc
$dI_{S}/dt = 100 \text{ A}/\mu\text{s}) \text{ (Note 2)}$ $t_{a} - 20 - t_{b}$ $t_{b} - 14 - t_{b}$				- -			
t _a - 20 - t _b - 14 -	Reverse Recovery Time		t _{rr}		34		ns
		uig/ui = 100 Α/με) (Note 2)	ta		20		
Reverse Recovery Stored Charge $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			t _b		14	_	
	Reverse Recovery Stored Charge		Q _{RR}		0.036	_	μС

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
3. Switching characteristics are independent of operating junction temperatures.
4. Reflects typical values. $Cpk = \left | \frac{\text{Max limit} - Typ}{3 \times \text{SIGMA}} \right |$

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL ELECTRICAL CHARACTERISTICS

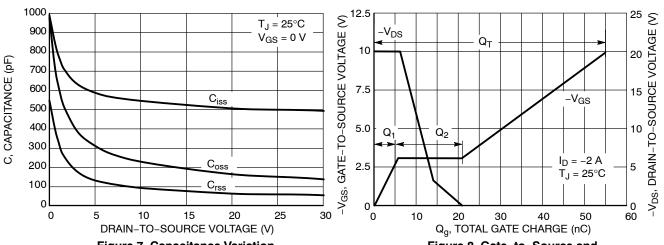


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

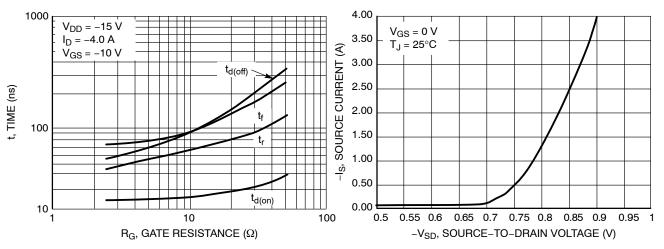


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

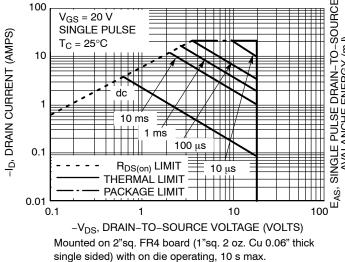
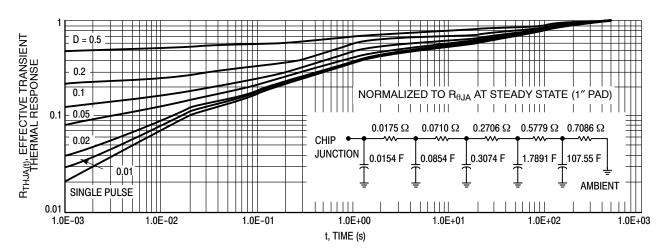
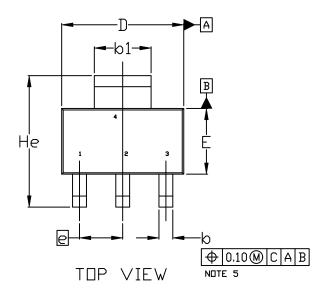
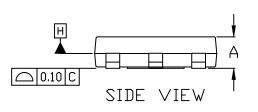


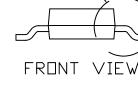
Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

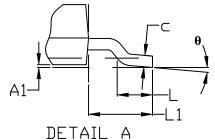
TYPICAL ELECTRICAL CHARACTERISTICS

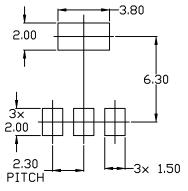




Figure 13. FET Thermal Response



SOT-223 (TO-261) CASE 318E-04 ISSUE R


DATE 02 OCT 2018


SEE DETAIL A

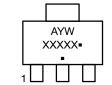
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
C	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	4. DHAIN STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B