<u>MOSFET</u> – Power, N-Channel, SUPERFET[®] III, FRFET[®]

650 V, 65 A, 40 m Ω

NTH4L040N65S3F

Description

SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate.

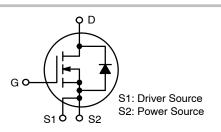
Consequently, SUPERFET III MOSFET is very suitable for the various power system for miniaturization and higher efficiency.

SUPERFET III FRFET MOSFET's optimized reverse recovery performance of body diode can remove additional component and improve system reliability.

Features

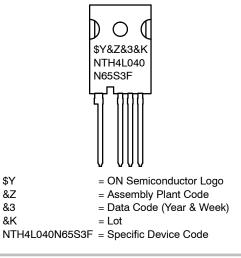
- 700 V @ $T_J = 150^{\circ}C$
- Typ. $R_{DS(on)} = 32 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 158 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 1366 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications


- Telecom / Server Power Supplies
- Industrial Power Supplies
- EV Charger
- UPS / Solar

ON Semiconductor®

www.onsemi.com


V _{DSS}	R _{DS(ON)} MAX	I _D MAX	
650 V	40 m Ω	65 A	

POWER MOSFET

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parameter		Value	Unit	
V _{DSS}	Drain to Source Voltage		650	V	
V _{GSS}	Gate to Source Voltage	– DC	±30	V	
		– AC (f > 1 Hz)	±30	-	
ID	Drain Current	– Continuous (T _C = 25°C)	65	А	
		– Continuous (T _C = 100°C)	45		
I _{DM}	Drain Current	– Pulsed (Note 1)	162.5	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	Pulsed Avalanche Energy (Note 2)		mJ	
I _{AS}	Avalanche Current (Note 2)	he Current (Note 2)		A	
E _{AR}	Repetitive Avalanche Energy (Note 1)		4.46	mJ	
dv/dt	MOSFET dv/dt		100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)		50		
PD	Power Dissipation	(T _C = 25°C)	446	W	
	– Derate Above 25°C		3.57	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
ΤL	Maximum Lead Temperature for Soldering, 1/8	" from Case for 5 seconds	300	°C	

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. $I_{AS} = 9 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$. 3. $I_{SD} \leq 32.5 \text{ A}, \text{ di/dt} \leq 200 \text{ A/}\mu\text{s}, V_{DD} \leq 400 \text{ V}, \text{ starting } T_J = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.28	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient, Max.	40	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTH4L040N65S3F	NTH4L040N65S3F	TO-247 - 4LD	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

STICS							
FF CHARACTERISTICS							
ain to Source Breakdown Voltage	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	650			V		
	V_{GS} = 0 V, I_D = 1 mA, T_J = 150°C	700			V		
eakdown Voltage Temperature pefficient	I_D = 15 mA, Referenced to 25°C		0.63		V/°C		
ro Gate Voltage Drain Current	$V_{DS} = 650 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			10	μA		
	V_{DS} = 520 V, T_{C} = 125°C		213				
ate to Body Leakage Current	V_{GS} = ±30 V, V_{DS} = 0 V			±100	nA		
e	eakdown Voltage Temperature efficient o Gate Voltage Drain Current	Gover D and Colspan="2">Gover D and Colspan="2" C	$V_{GS} = 0 \text{ V}, \text{ I}_D = 1 \text{ mA}, \text{ T}_J = 150^{\circ}\text{C}$ $V_{GS} = 0 \text{ V}, \text{ I}_D = 1 \text{ mA}, \text{ T}_J = 150^{\circ}\text{C}$ $T_D = 15 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 650 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$ $V_{DS} = 520 \text{ V}, \text{ T}_C = 125^{\circ}\text{C}$	area of the definition of the definit	$\begin{tabular}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 2.1$ mA	3.0		5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = 10 V, I _D = 32.5 A		32	40	mΩ
9fs	Forward Transconductance	V_{DS} = 20 V, I _D = 32.5 A		48		S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 400 V, V_{GS} = 0 V, f = 1 MHz	5940	pF
C _{oss}	Output Capacitance		140	pF
C _{oss(eff.)}	Effective Output Capacitance	$V_{DS} = 0 V$ to 400 V, $V_{GS} = 0 V$	1366	pF
C _{oss(er.)}	Energy Related Output Capacitance	V_{DS} = 0 V to 400 V, V_{GS} = 0 V	247	pF
Q _{g(tot)}	Total Gate Charge at 10V	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 32.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	158	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	48	nC
Q _{gd}	Gate to Drain "Miller" Charge		60	nC
ESR	Equivalent Series Resistance	f = 1 MHz	1.1	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 32.5 \text{ A},$	44	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{g} = 2.2 \Omega$ (Note 4)	23	ns
t _{d(off)}	Turn-Off Delay Time		96	ns
t _f	Turn-Off Fall Time		6	ns

SOURCE-DRAIN DIODE CHARACTERISTICS

ا _S	Maximum Continuous Source to Drain Diode Forward Current			65	А
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current			162.5	А
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 32.5 A		1.3	V
t _{rr}	Reverse Recovery Time	$V_{DD} = 400 \text{ V}, \text{ I}_{SD} = 32.5 \text{ A},$	145		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	737		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

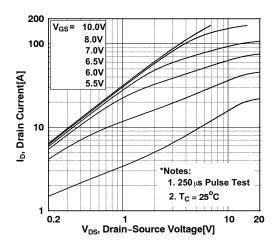
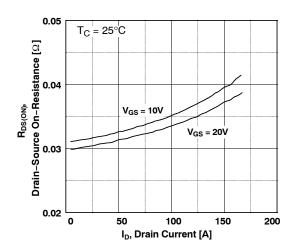



Figure 1. On-Region Characteristics

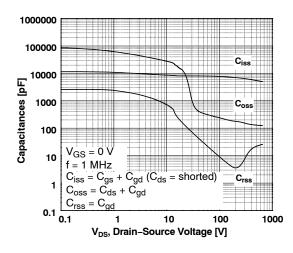


Figure 5. Capacitance Characteristics

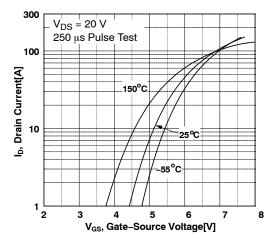


Figure 2. Transfer Characteristics

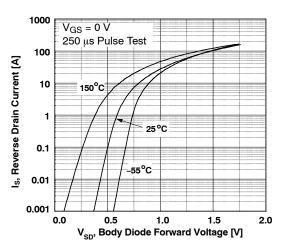


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

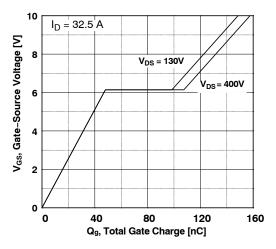
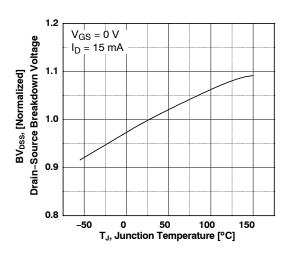
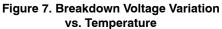




Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

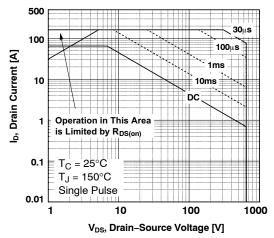


Figure 9. Maximum Safe Operating Area

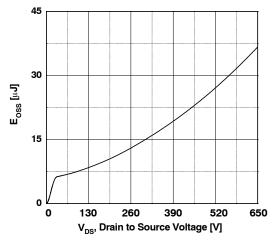


Figure 11. Eoss vs. Drain to Source Voltage

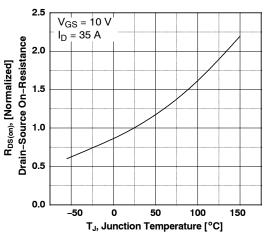


Figure 8. On–Resistance Variation vs. Temperature

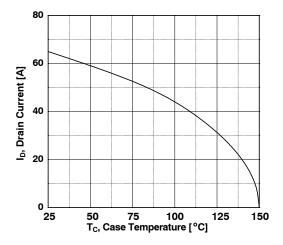


Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

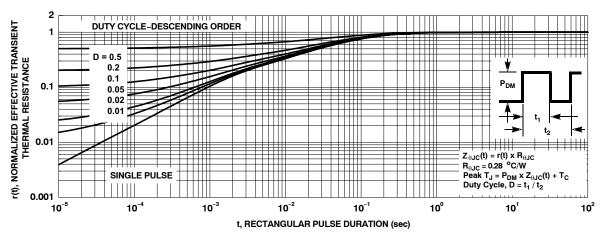


Figure 12. Transient Thermal Response Curve

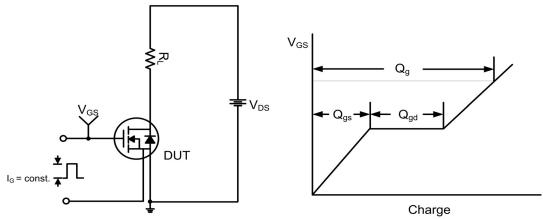


Figure 13. Gate Charge Test Circuit & Waveform

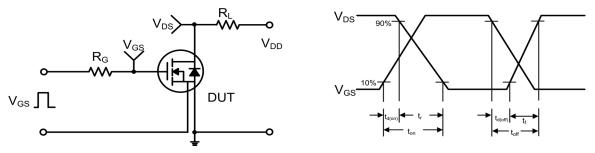
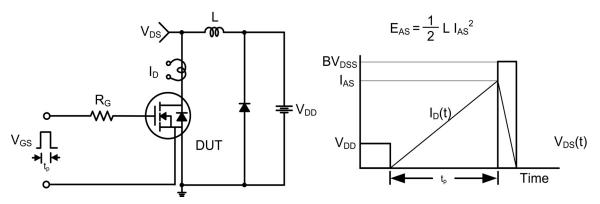
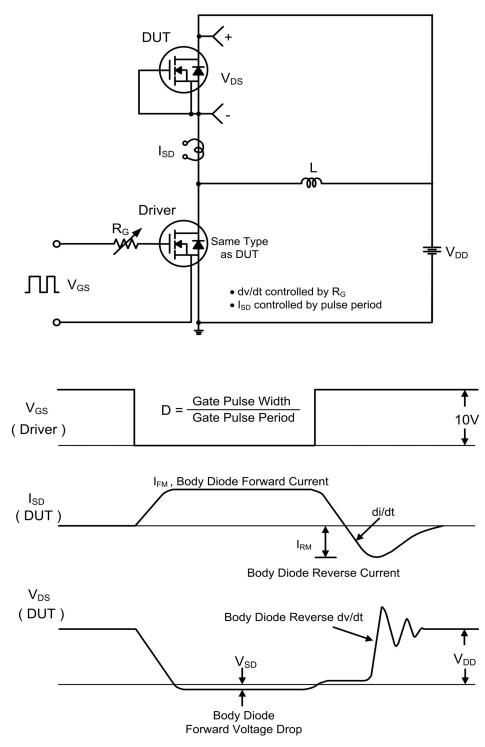
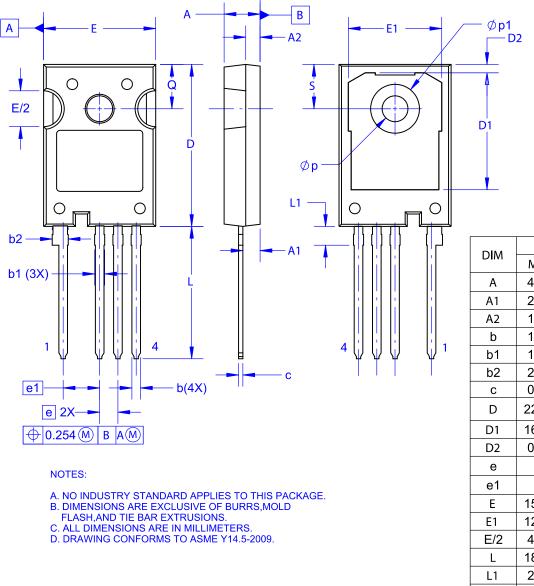



Figure 14. Resistive Switching Test Circuit & Waveforms




Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET and FRFET are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TO-247-4LD CASE 340CJ ISSUE A

DATE 16 SEP 2019

	MIL	LIMETER	S
DIM	MIN	NOM	MAX
А	4.80	5.00	5.20
A1	2.10	2.40	2.70
A2	1.80	2.00	2.20
b	1.07	1.20	1.33
b1	1.20	1.40	1.60
b2	2.02	2.22	2.42
С	0.50	0.60	0.70
D	22.34	22.54	22.74
D1	16.00	16.25	16.50
D2	0.97	1.17	1.37
е	2	2.54 BSC	2
e1	Ę	5.08 BSC	2
Е	15.40	15.60	15.80
E1	12.80	13.00	13.20
E/2	4.80	5.00	5.20
L	18.22	18.42	18.62
L1	2.42	2.62	2.82
р	3.40	3.60	3.80
p1	6.60	6.80	7.00
Q	5.97	6.17	6.37
S	5.97	6.17	6.37

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1			
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B