ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET - SiC Power, Single **N-Channel**

900 V, 60 mΩ, 46 A

NTH4L060N090SC1

Features

- Typ. $R_{DS(on)} = 60 \text{ m}\Omega @ V_{GS} = 15 \text{ V}$ Typ. $R_{DS(on)} = 43 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge (typ. $Q_{G(tot)} = 87 \text{ nC}$)
- Low Effective Output Capacitance (typ. C_{oss} = 113 pF)
- 100% UIL Tested
- These Devices are RoHS Compliant

Typical Applications

- UPS
- DC/DC Converter
- Boost Inverter

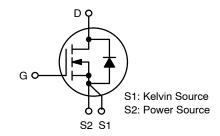
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	900	V
Gate-to-Source Voltage			V _{GS}	+22/-8	V
Recommended Operation Values of Gate-to-Source Voltage	T _C < 175°C		V_{GSop}	-5/+15	V
Continuous Drain Current $R_{\theta JC}$	Steady State T _C = 25°C		I _D	46	Α
Power Dissipation $R_{\theta JC}$	State		P_{D}	221	W
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 100°C	I _D	32	Α
Power Dissipation $R_{\theta JC}$	Olaic		P_{D}	110	W
Pulsed Drain Current (Note 2)	T _A	= 25°C	I _{DM}	211	Α
Operating Junction and S Range	T _J , T _{stg}	-55 to +175	°C		
Source Current (Body Diode)			Is	22	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 18 A, L = 1 mH) (Note 3)			E _{AS}	162	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{\theta JC}$	0.68	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	°C/W


- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature. 3. E_{AS} of 162 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 18 A, V_{DD} = $100 \text{ V}, \text{ V}_{GS} = 15 \text{ V}.$

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
900 V	84 mΩ @ 15 V	46 A	

N-CHANNEL MOSFET

MARKING DIAGRAM

H4L060090SC1 = Specific Device Code = Assembly Site Υ = Year of Production WW =Work Week Number ZZ = Assembly Lot Number

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	900			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C		574		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 900 V, T _J = 25°C			100	μΑ
		V _{GS} = 0 V, V _{DS} = 900 V, T _J = 175°C			250	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +22/-8 V, V _{DS} = 0 V			±1	μΑ
ON CHARACTERISTICS	•			•	•	•
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 5 \text{ mA}$	1.8	2.7	4.3	V
Recommended Gate Voltage	V_{GOP}		-5		+15	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 15 \text{ V}, I_D = 20 \text{ A}, T_J = 25^{\circ}\text{C}$		60	84	mΩ
		V _{GS} = 18 V, I _D = 20 A, T _J = 25°C		43		
		V _{GS} = 15 V, I _D = 20 A, T _J = 175°C		76		
Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 20 A		17		S
CHARGES, CAPACITANCES & GATE	RESISTANCE			1		
Input Capacitance	C _{ISS}			1770		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 450 V		113		
Reverse Transfer Capacitance	C _{RSS}	1 -		11		
Total Gate Charge	Q _{G(tot)}			87		nC
Threshold Gate Charge	Q _{G(th)}	1		17		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = -5/15 \text{ V}, V_{DS} = 720 \text{ V}, I_D = 10 \text{ A}$		27		
Gate-to-Drain Charge	Q_{GD}	1		26		
Gate Resistance	R _G	f = 1 MHz		3.0		Ω
SWITCHING CHARACTERISTICS				L	I	
Turn-On Delay Time	t _{d(on)}			17	31	ns
Rise Time	t _r	1		15	27	
Turn-Off Delay Time	t _{d(off)}	1		29	47	
Fall Time	t _f	V_{GS} = -5/15 V, V_{DS} = 720 V, I_{D} = 20 A, R_{G} = 2.5 Ω,		11	20	
Turn-On Switching Loss	E _{ON}	Inductive Load		183		μJ
Turn-Off Switching Loss	E _{OFF}	1		52		1
Total Switching Loss	E _{TOT}	1		235		
DRAIN-SOURCE DIODE CHARACTE	1			I	I	
Continuous Drain-to-Source Diode Forward Current	I _{SD}	V _{GS} = -5 V, T _J = 25°C			22	А
Pulsed Drain-to-Source Diode Forward Current (Note 2)	I _{SDM}	V _{GS} = -5 V, T _J = 25°C			184	Α
Forward Diode Voltage	V _{SD}	V _{GS} = -5 V, I _{SD} = 10 A, T _J = 25°C		3.9		V
Reverse Recovery Time	t _{RR}			18		ns
Reverse Recovery Charge	Q _{RR}	1		84		nC
Reverse Recovery Energy	E _{REC}	Vog = -5/15 V log = 30 Δ		1.0		μJ
Peak Reverse Recovery Current	I _{RRM}	$V_{GS} = -5/15 \text{ V}, I_{SD} = 30 \text{ A},$ $dI_S/dt = 1000 \text{ A}/\mu\text{s}, V_{DS} = 720 \text{ V}$		9.0		A
Charge Time	t _a	†		10		ns
Discharge Time	t _b	†		8.0		ns
ŭ				1	L	L

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

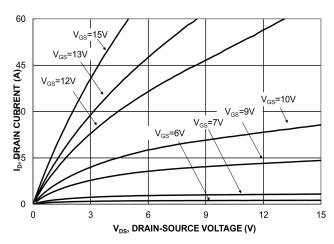


Figure 1. On-Region Characteristics

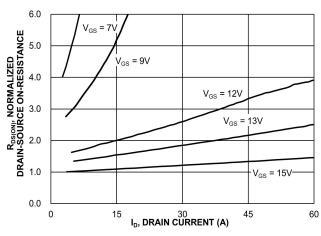


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

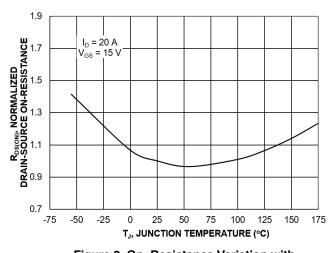


Figure 3. On–Resistance Variation with Temperature

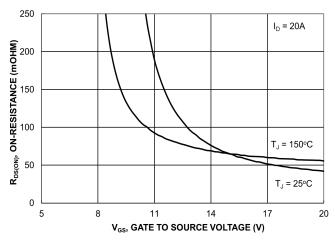


Figure 4. On-Resistance vs. Gate-to-Source Voltage

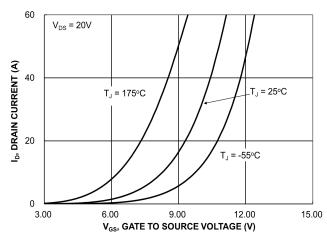


Figure 5. Transfer Characteristics

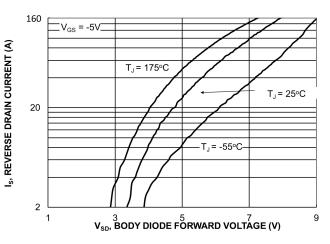


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

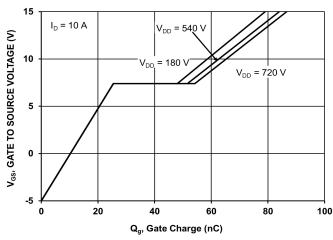


Figure 7. Gate-to-Source Voltage vs. Total Charge

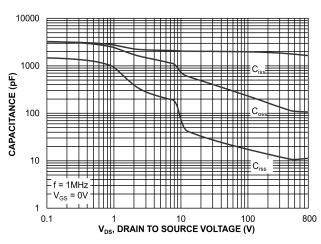


Figure 8. Capacitance vs. Drain-to-Source Voltage

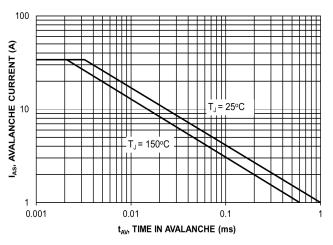


Figure 9. Unclamped Inductive Switching Capability

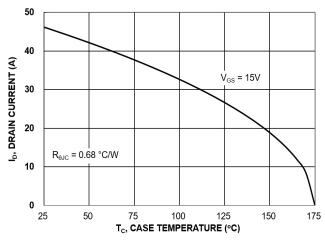


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

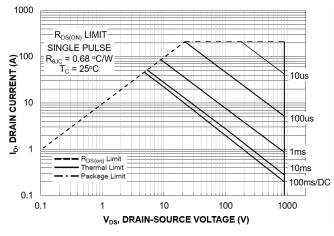


Figure 11. Safe Operating Area

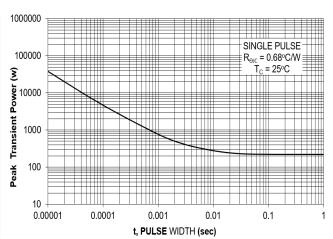
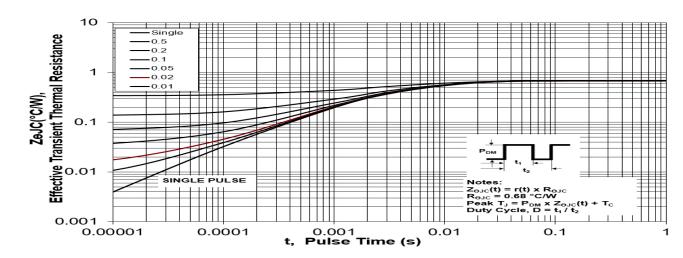
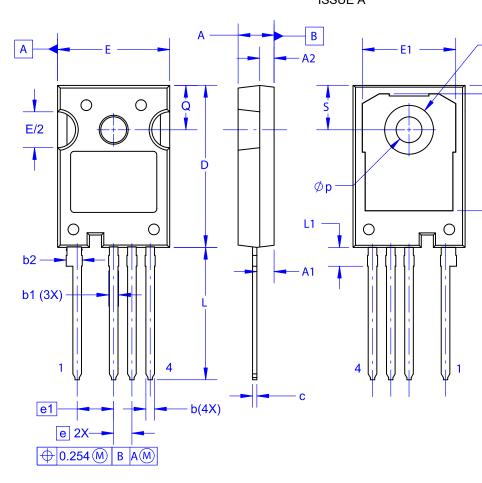


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS




Figure 13. Junction-to-Ambient Thermal Response

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTH4L060N090SC1	H4L060 090SC1	TO247-4L	Tube	N/A	N/A	30 Units

PACKAGE DIMENSIONS

TO-247-4LD CASE 340CJ ISSUE A

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.80	5.00	5.20		
A1	2.10	2.40	2.70		
A2	1.80	2.00	2.20		
b	1.07	1.20	1.33		
b1	1.20	1.40	1.60		
b2	2.02	2.22	2.42		
С	0.50	0.60	0.70		
D	22.34	22.54	22.74		
D1	16.00	16.25	16.50		
D2	0.97	1.17	1.37		
е	2.54 BSC				
e1	5.08 BSC				
E	15.40	15.60	15.80		
E1	12.80	13.00	13.20		
E/2	4.80	5.00	5.20		
L	18.22	18.42	18.62		
L1	2.42	2.62	2.82		
р	3.40	3.60	3.80		
p1	6.60 6.80		7.00		
Q	5.97	6.17	6.37		
S	5.97	6.17	6.37		

Øp1

D1

D2

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E

DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691
TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960

NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF

DMP22D4UFO-7B DMN1006UCA6-7