MOSFET - Power, Complementary ChipFET 20 V, +3.9 A / -3.0 A

Features

- Complementary N-Channel and P-Channel MOSFET
- Small Size, 40% Smaller than TSOP-6 Package
- Leadless SMD Package Featuring Complementary Pair
- ChipFET Package Provides Great Thermal Characteristics Similar to Larger Packages
- Low R_{DS(on)} in a ChipFET Package for High Efficiency Performance
- Low Profile (< 1.10 mm) Allows Placement in Extremely Thin Environments Such as Portable Electronics
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

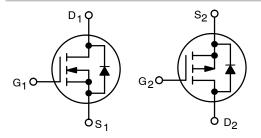
Applications

- Load Switch Applications Requiring Level Shift
- DC-DC Conversion Circuits
- Drive Small Brushless DC Motors
- Designed for Power Management Applications in Portable, Battery Powered Products

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Paramo	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	20	V		
Gate-to-Source Voltage			V _{GS}	±12	V
Continuous Drain Current (Note 1)	N-Ch Steady	T _A = 25°C	I _D	2.9	Α
Current (Note 1)	State	T _A = 85°C		2.1	
	t ≤ 5	T _A = 25°C		3.9	
	P-Ch Steady				Α
	State	T _A = 85°C		-1.6	
	t ≤ 5	T _A = 25°C		-3.0	
Pulsed Drain Current	N-Ch	t = 10 μs	I _{DM}	12	Α
(Note 1)	P-Ch	t = 10 μs		-9.0	
Power Dissipation (Note 1)	·				W
		2.1			
Operating Junction and Si Temperature	T _J , T _{STG}	-55 to 150	°C		
Lead Temperature for Sol (1/8" from case for 10 sec	TL	260	°C		

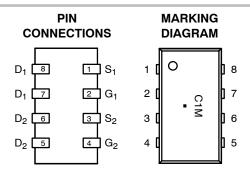
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


 Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
N-Channel	60 mΩ @ 4.5 V	3.9 A
20 V	80 mΩ @ 2.5 V	3.9 A
P-Channel	130 mΩ @ –4.5 V	-3.0 A
-20 V	200 mΩ @ -2.5 V	-3.0 A



N-Channel MOSFET

P-Channel MOSFET

ChipFET CASE 1206A STYLE 2

C1 = Specific Device Code

M = Month Code

= Pb–Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTHC5513T1G	ChipFET (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit		
Junction-to-Ambient (Note 1) Steady State			$R_{ hetaJA}$	110	°C/W
	t ≤ 5	T _A = 25°C		60	

^{2.} Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions			Тур	Max	Unit
OFF CHARACTERISTICS (Note 3)	•							•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N		I _D = 250 μA	20			V
		Р	$V_{GS} = 0 V$	I _D = -250 μA	-20			
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} =	= 16 V			1.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} =	$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$			-1.0	
		N	V _{GS} = 0 V, V _{DS} = 16 V	′, T _J = 85 °C			5	
		Р	V _{GS} = 0 V, V _{DS} = -16 V	/, T _J = 85 °C			-5	
Gate-to-Source Leakage Current	I _{GSS}		$V_{DS} = 0 V, V_{GS} =$	= ±12 V			±100	nA
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage	V _{GS(TH)}	N	V V	I _D = 250 μA	0.6		1.2	V
		Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.6		-1.2	
Drain-to-Source On Resistance	R _{DS} (on)	N	$V_{GS} = 4.5 \text{ V}, I_D = 2.9 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -2.2 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 2.3 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -1.7 \text{ A}$			0.058	0.080	
		Р				0.130	0.155	Ω
		N				0.077	0.115	
		Р				0.200	0.240	
Forward Transconductance	9FS	N	V _{DS} = 10 V, I _D = 2.9A			6.0		S
		Р	$V_{DS} = -10 \text{ V}, I_{D} =$: -2.2 A		6.0		
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}	N		V _{DS} = 10 V		180		pF
		Р		V _{DS} = -10 V		185		
Output Capacitance	C _{OSS}	N	f 1 MH = \/ 0 \/	V _{DS} = 10 V		80		
		Р	f = 1 MHz, V _{GS} = 0 V	V _{DS} = -10 V		95		
Reverse Transfer Capacitance	C _{RSS}	N		V _{DS} = 10 V		25		
		Р		V _{DS} = -10 V		30		
Total Gate Charge	Q _{G(TOT)}	N	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 2.9 A			2.6	4.0	nC
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -2.2 \text{ A}$			3.0	6.0	
Gate-to-Source Gate Charge	Q _{GS}	N	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 2.9 A		0.6		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V, I_D = -2.2 A$		0.5		
Gate-to-Drain "Miller" Charge	Q_{GD}	N	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 2.9 A		0.7		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V, I_D = -2.2 A$		0.9		

P $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -2.2 \text{ A}$ 0.9 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width $\leq 250 \, \mu \text{s}$, Duty Cycle $\leq 2\%$.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Conditi	ons	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	ote 4)							
Turn-On Delay Time	t _{d(ON)}					5.0	10	ns
Rise Time	t _r	N	V _{DD} = 16 V, V _{GS} = 4.5	V, I _D = 2.9 A,		9.0	18	
Turn-Off Delay Time	t _{d(OFF)}		$R_{G} = 2.5 \Omega$			10	20	
Fall Time	t _f					3.0	6.0	
Turn-On Delay Time	t _{d(ON)}					7.0	12	
Rise Time	t _r	P	V _{DD} = -16 V, V _{GS} = -4.5	5 V, I _D = -2.2 A,		13	25	
Turn-Off Delay Time	t _{d(OFF)}	7	$R_G = 2.5 \Omega$			33	50	
Fall Time	t _f					27	40	
DRAIN-SOURCE DIODE CHARACTE	ERISTICS							
Forward Diode Voltage (Note 5)	V_{SD}	N	V 0V	I _S = 2.6 A		0.8	1.15	V
		Р	$V_{GS} = 0 \text{ V}$ $I_{S} = -2.1 \text{ A}$			-0.8	-1.15	
Reverse Recovery Time (Note 4)	t _{RR}	N		I _S = 1.5 A		12.5		ns
		Р		I _S = -1.5 A		32		
Charge Time	t _a	N		I _S = 1.5 A		9.0		
		Р	V _{GS} = 0 V,	I _S = -1.5 A		10		
Discharge Time	t _b	N	$dl_{S} / dt = 100 \text{ A/}\mu\text{s}$ $l_{S} = 1.5 \text{ A}$			3.5		
		Р		I _S = -1.5 A		22		
Reverse Recovery Charge	Q _{RR}	N			6.0		nC	
		Р			15			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Switching characteristics are independent of operating junction temperatures.

5. Pulse Test: Pulse Width ≤ 250 μs, Duty Cycle ≤ 2%.

TYPICAL N-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

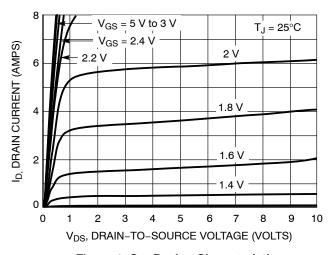


Figure 1. On-Region Characteristics

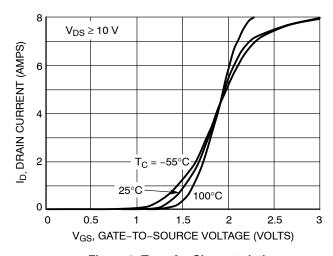


Figure 2. Transfer Characteristics

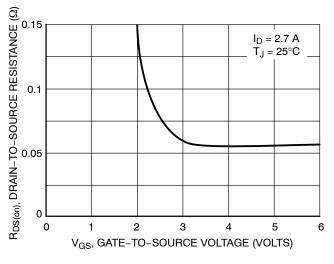


Figure 3. On-Resistance vs. Gate-to-Source Voltage

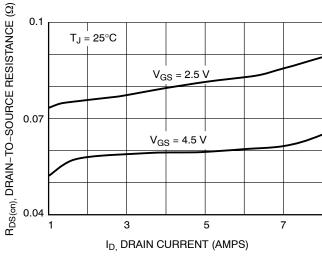


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

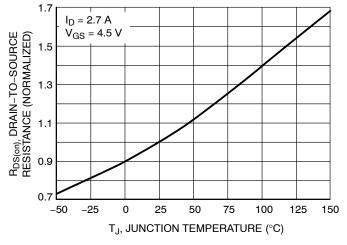


Figure 5. On–Resistance Variation with Temperature

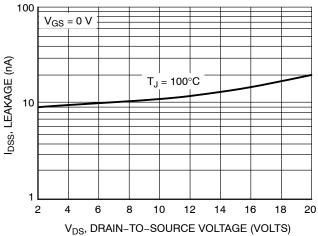
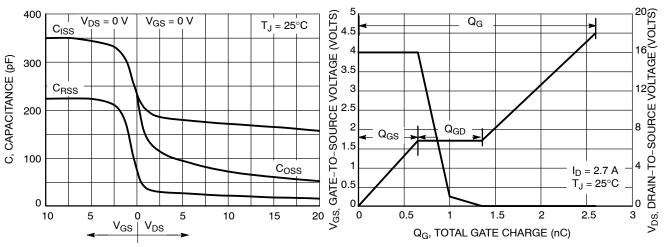



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL N-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

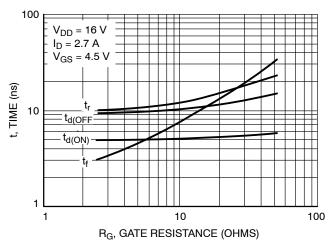


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

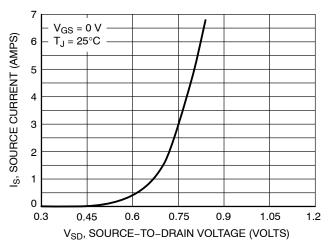


Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

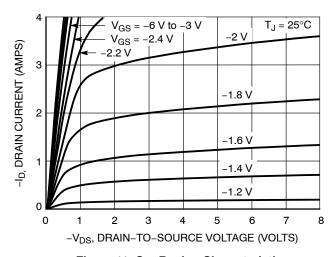


Figure 11. On-Region Characteristics

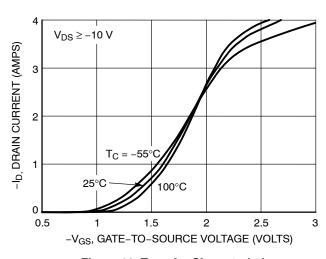


Figure 12. Transfer Characteristics

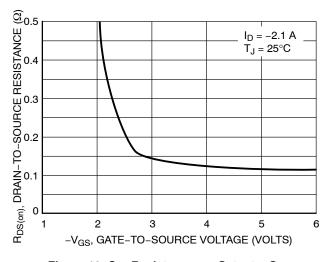


Figure 13. On-Resistance vs. Gate-to-Source Voltage

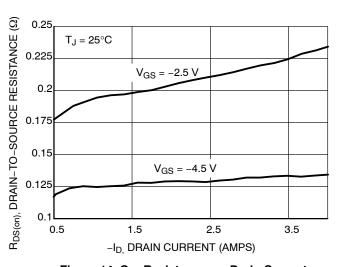


Figure 14. On-Resistance vs. Drain Current and Gate Voltage

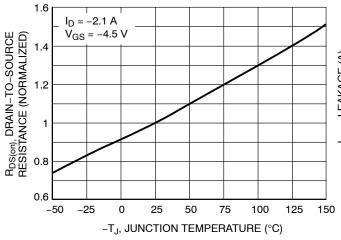


Figure 15. On–Resistance Variation with Temperature

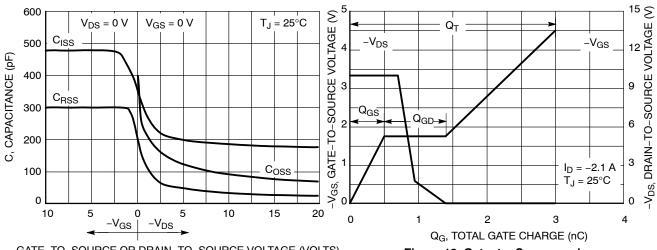



Figure 16. Drain-to-Source Leakage Current vs. Voltage

TYPICAL P-CHANNEL PERFORMANCE CURVES

(T_{.1} = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 18. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

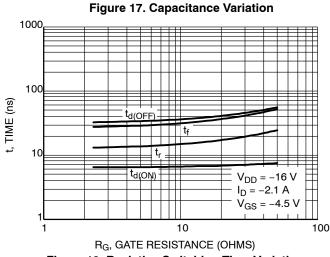


Figure 19. Resistive Switching Time Variation vs. Gate Resistance

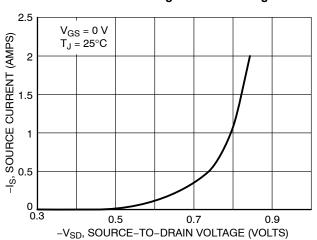


Figure 20. Diode Forward Voltage vs. Current

TYPICAL PERFORMANCE CURVES

(T_J = 25°C unless otherwise noted)

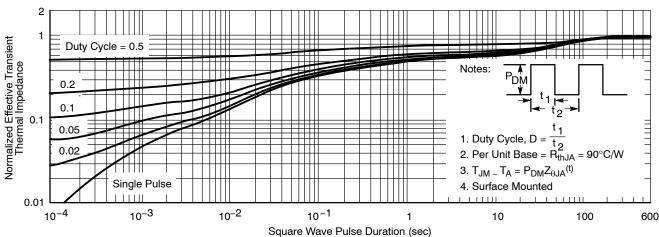


Figure 21. Thermal Response

SOLDERING FOOTPRINT*

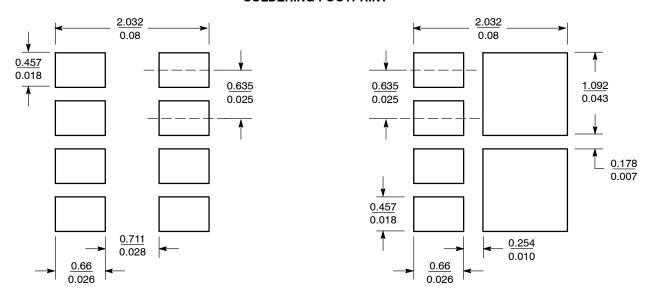
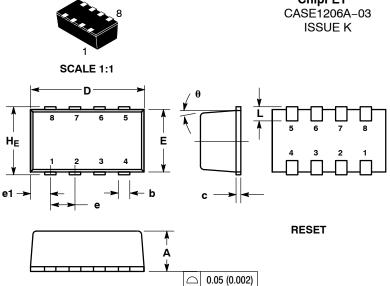


Figure 22. Basic

Figure 23. Style 2


BASIC PAD PATTERNS

The basic pad layout with dimensions is shown in Figure 22. This is sufficient for low power dissipation MOSFET applications, but power semiconductor performance requires a greater copper pad area, particularly for the drain leads.

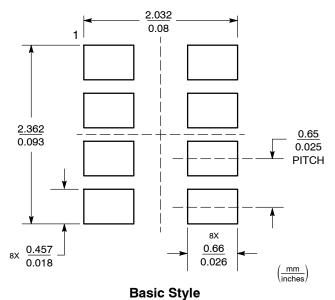
The minimum recommended pad pattern shown in Figure 23 improves the thermal area of the drain connections (pins 5, 6, 7, 8) while remaining within the

confines of the basic footprint. The drain copper area is 0.0019 sq. in. (or 1.22 sq. mm). This will assist the power dissipation path away from the device (through the copper lead–frame) and into the board and exterior chassis (if applicable) for the single device. The addition of a further copper area and/or the addition of vias to other board layers will enhance the performance still further.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ChipFET™

DATE 19 MAY 2009


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL
- AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е		0.65 BSC			0.025 BSC	;
e1		0.55 BSC			0.022 BSC	;
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ	5° NOM				5° NOM	

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. DRAIN	PIN 1. SOURCE 1	PIN 1. ANODE	PIN 1. COLLECTOR	PIN 1. ANODE	PIN 1. ANODE
DRAIN	2. GATE 1	2. ANODE	2. COLLECTOR	ANODE	2. DRAIN
DRAIN	SOURCE 2	SOURCE	COLLECTOR	DRAIN	3. DRAIN
GATE	4. GATE 2	4. GATE	4. BASE	DRAIN	4. GATE
SOURCE	5. DRAIN 2	5. DRAIN	EMITTER	SOURCE	5. SOURCE
DRAIN	6. DRAIN 2	6. DRAIN	COLLECTOR	GATE	6. DRAIN
DRAIN	7. DRAIN 1	CATHODE	COLLECTOR	CATHODE	7. DRAIN
8. DRAIN	8. DRAIN 1	CATHODE	COLLECTOR	CATHODE	8. CATHODE / DRAIN

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

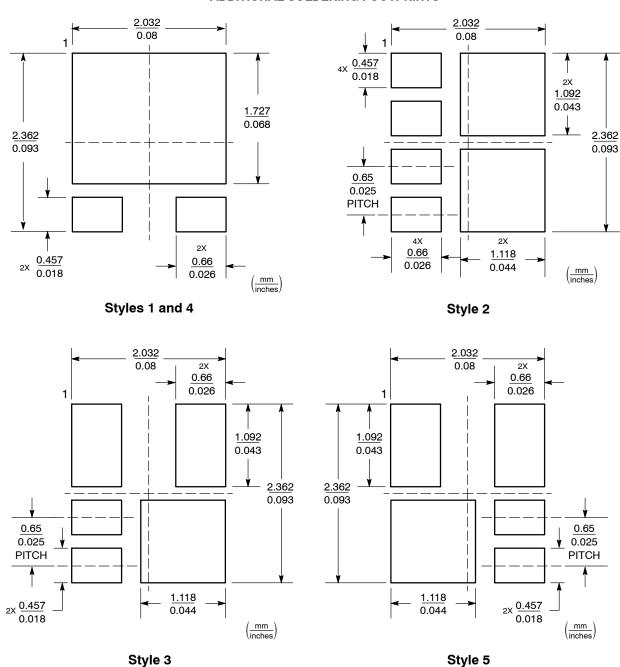
= Specific Device Code XXX

М = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.


OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 1 OF 2	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON03078D	D Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 2 OF 2	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B