

MOSFET - Power, Single N-Channel, SUPERFET[®], FAST, TO247 600 V, 17 mΩ, 75 A

NTHL017N60S5H

Description

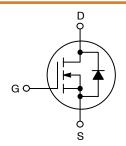
The SUPERFET V MOSFET FAST series helps maximize system efficiency by the extremely low switching losses in hard switching application.

Features

- 650 V @ $T_J = 150^{\circ}C / Typ. R_{DS(on)} = 14.3 \text{ m}\Omega$
- 100% Avalanche Tested
- Pb-Free, Halogen Free / BFR Free and RoHS Compliant

Applications

- Telecom / Server Power Supplies
- EV Charger / UPS / Solar / Industrial Power Supplies

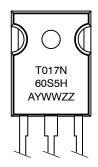

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V_{DSS}	600	V
Gate-to-Source Voltage	DC	V _{GS}	±30	V
	AC (f > 1 Hz)		±30	
Continuous Drain Current	T _C = 25°C	I _D	75	Α
	T _C = 100°C		75	
Power Dissipation	T _C = 25°C	P_{D}	625	W
Pulsed Drain Current (Note 1)	T _C = 25°C	I _{DM}	431	Α
Pulsed Source Current (Body Diode) (Note 1)		I _{SM}	431	Α
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
Source Current (Body Diode)		I _S	75	Α
Single Pulse Avalanche Energy	$I_L = 13.2 \text{ A},$ $R_G = 25 \Omega$	E _{AS}	1350	mJ
Avalanche Current		I _{AS}	13.2	Α
Repetitive Avalanche Energy (Note 1)		E _{AR}	6.25	mJ
MOSFET dv/dt		dv/dt	120	V/ns
Peak Diode Recovery dv/dt (Note 2)			20	
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)		T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive rating: pulse-width limited by maximum junction temperature.
- 2. $I_{SD} \le 37.5 \text{ A}$, di/dt $\le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}\text{C}$.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
600 V	17 mΩ @ 10 V	75 A	



N-CHANNEL MOSFET

TO-247-3LD CASE 340CX

MARKING DIAGRAM

T017N60S5H = Specific Device Code

A = Assembly Location YWW = Date Code (Year & Week)

ZZ = Assembly Lot

ORDERING INFORMATION

Device	Package	Shipping
NTHL017N60S5H	TO247	30 Units / Tube

THERMAL CHARACTERISTICS

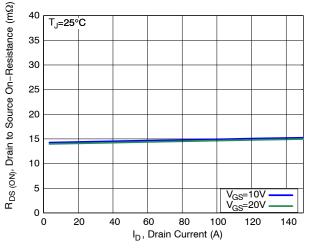
Parameter		Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.2	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	600	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_J$	I _D = 10 mA, Referenced to 25°C	-	630	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 600 V, T _J = 25°C	-	-	5	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
ON CHARACTERISTICS	-	•				
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 37.5 \text{ A}, T_J = 25^{\circ}\text{C}$	-	14.3	17.9	mΩ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 16 \text{ mA}, T_J = 25^{\circ}\text{C}$	2.7	-	4.3	V
Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 37.5 A	-	102	-	S
CHARGES, CAPACITANCES & GATE RE	SISTANCE					
Input Capacitance	C _{ISS}	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}, f = 250 \text{ kHz}$	-	14200	-	pF
Output Capacitance	Coss]	_	191	-	1
Time Related Output Capacitance	C _{OSS(tr)}	I_D = Constant, V_{DS} = 0 to 400 V, V_{GS} = 0 V	-	3040	-	
Energy Related Output Capacitance	C _{OSS(er)}	V _{DS} = 0 to 400 V, V _{GS} = 0 V	-	322	-	1
Total Gate Charge	Q _{G(TOT)}	$V_{DD} = 400 \text{ V}, I_D = 37.5 \text{ A},$	-	265	-	nC
Gate-to-Source Charge	Q _{GS}	V _{GS} = 10 V	_	60.5	-	1
Gate-to-Drain Charge	Q_{GD}		-	72.7	-	1
Gate Resistance	R_{G}	f = 1 MHz	-	1.07	-	Ω
SWITCHING CHARACTERISTICS	-	•				
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 0/10 \text{ V}, V_{DD} = 400 \text{ V},$	-	57.9	-	ns
Rise Time	t _r	I_D = 37.5 A, R_G = 2.2 Ω	-	22	-	1
Turn-Off Delay Time	t _{d(OFF)}	1	-	167	-	1
Fall Time	t _f		-	4.76	-	1
SOURCE-TO-DRAIN DIODE CHARACT	ERISTICS			-		-
Forward Diode Voltage	V _{SD}	$I_{SD} = 37.5 \text{ A}, V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C}$	-	-	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, I_{SD} = 37.5 \text{ A},$	-	490	-	ns
Reverse Recovery Charge	Q_{RR}	dl/dt = 100 A/μs, V _{DD} = 400 V	_	11780	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


TYPICAL CHARACTERISTICS

1000 V_{DS}=20V 100 T_J=-55°C T_J=25°C T_J=150°C T_J=150°C V_{GS}, Gate to Source Voltage (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

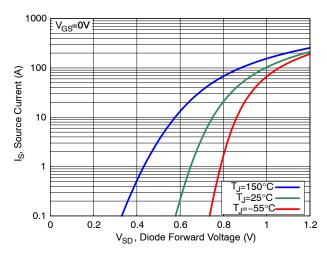
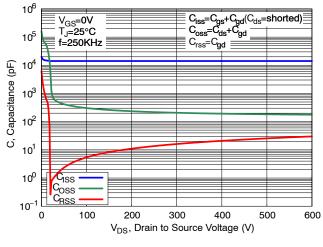



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Diode Forward Voltage vs. Source Current

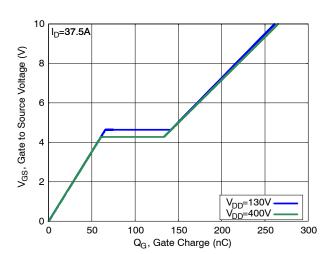


Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

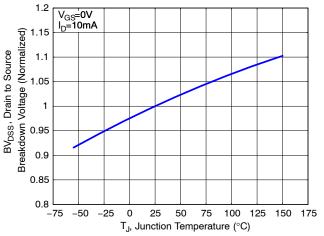
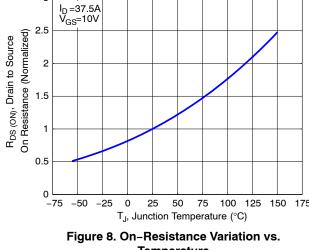



Figure 7. Breakdown Voltage Variation vs. Temperature

Temperature

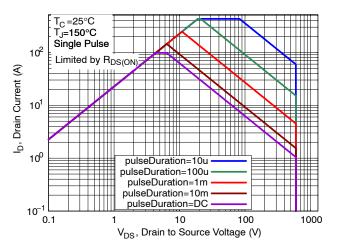


Figure 9. Maximum Safe Operating Area

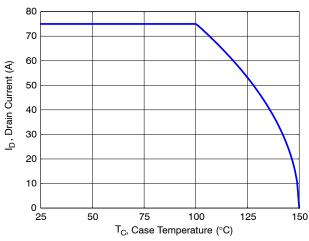


Figure 10. Maximum Drain Current vs. Case **Temperature**

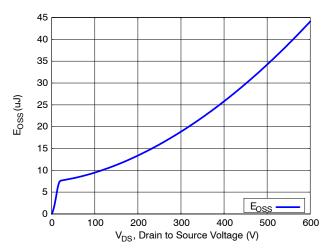


Figure 11. Eoss vs. Drain-to-Source Voltage

TYPICAL CHARACTERISTICS

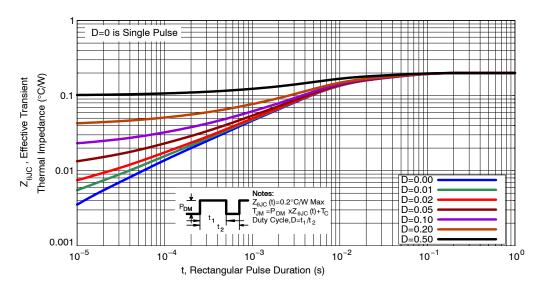
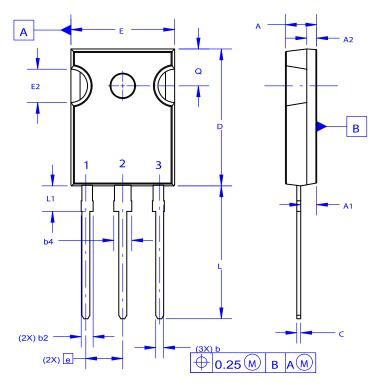
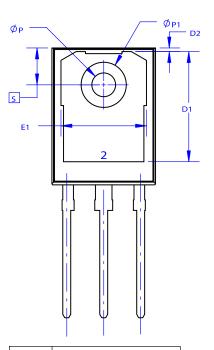



Figure 12. Transient Thermal Impedance


PACKAGE DIMENSIONS

TO-247-3LD CASE 340CX **ISSUE A**

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
 D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

DIM	MIL	LIMETER	S
DIM	MIN	NOM	MAX
Α	4.58	4.70	4.82
A 1	2.20	2.40	2.60
A2	1.40	1.50	1.60
D	20.32	20.57	20.82
Е	15.37	15.62	15.87
E2	4.96	5.08	5.20
е	~	5.56	~
L	19.75	20.00	20.25
L1	3.69	3.81	3.93
ØΡ	3.51	3.58	3.65
Q	5.34	5.46	5.58
S	5.34	5.46	5.58
b	1.17	1.26	1.35
b2	1.53	1.65	1.77
b4	2.42	2.54	2.66
С	0.51	0.61	0.71
D1	13.08	~	~
D2	0.51	0.93	1.35
E1	12.81	~	~
ØP1	6.60	6.80	7.00

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below:

041950FB 0W888-002-XTP 100307QCX 12A02CH-TL-E 15025-512-XTD 15C01C-TB-E 15C01M-TL-E 15C01SS-TL-E 15C02CH-TL-E 15C02MH-TL-E 15GN03CA-TB-E 15GN03MA-TL-E 1.5KE120ARL4 1.5KE18ARL4G 1.5KE250A 1.5KE27ARL4G 1.5KE39ARL4G 1.5KE47ARL4G 1.5SMC20AT3 1.5SMC24AT3 1.5SMC27AT3 1.5SMC39AT3 1.5SMC47AT3 1.5SMC68AT3 1.5SMC82AT3 1HN04CH-TL-W 1HP04CH-TL-W 1N3064 1N3070TR 1N3595 1N3595TR 1N4001G 1N4001RLG 1N4002G 1N4002RLG 1N4003G 1N4003RLG 1N4004RLG 1N4004RLG 1N4005G 1N4005RLG 1N4005TR 1N4005TR 1N4006FFG 1N4006G 1N4006RLG 1N4007FFG 1N4007G 1N4007RLG 1N4148 1N4148_T26A