MOSFET - Power, Single N-Channel, WDFN6

30 V, 4.38 mΩ, 18.8 A

NTLJS5D0N03C

Features

- Small Footprint (4 mm²) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen–Free/BFR–Free and are RoHS Compliant

Applications

- DC-DC Converters
- Wireless Chargers
- Power Load Switch
- Power Management and Protection
- Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

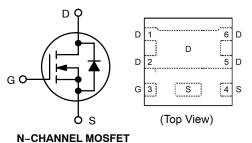
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Voltage	9		V_{GS}	±20	V
Continuous Drain	Steady State	T _A = 25°C	I _D	18.8	Α
Current R _{θJA} (Notes 1, 3)	State	T _A = 85°C		13.5	
Power Dissipation R _{θJA} (Notes 1, 3)		T _A = 25°C	P _D	2.40	W
Continuous Drain Current R _{0.IA}	Steady State	T _A = 25°C	I _D	11.2	Α
(Notes 2, 3)	State	T _A = 85°C		8.1	
Power Dissipation R _{θJA} (Notes 2, 3)		T _A = 25°C	P _D	0.86	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	75	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	52	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	145	

- 1. Surface-mounted on FR4 board using 1 in² pad size, 2 oz. Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz. Cu pad.
- 3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro–mechanical application board design. R_{0CA} is determined by the user's board design.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	4.38 m Ω @ 10 V	18.8 A
30 V	7.25 mΩ @ 4.5 V	10.0 K

ELECTRICAL CONNECTION

WDFN6 (2.05x2.05) CASE 483AV

MARKING DIAGRAM

YW = Date Code

ZZ = Assembly Lot Code

A = Assembly Site Code 5D0 = Specific Device Code

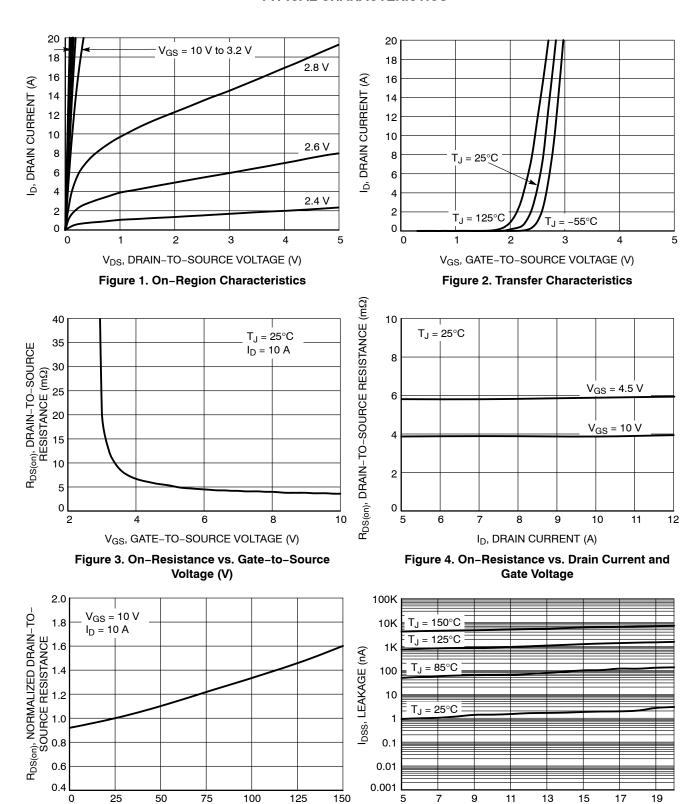
ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 4 of this data sheet.

NTLJS5D0N03C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	- <u>'</u>				-		-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			18.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
		$V_{GS} = 0 V$, $V_{DS} = 24 V$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.2		2.2	V
Threshold Temperature Coefficient	V_{GS}/T_J	I _D = 250 μA, re	ef to 25°C		-5.43		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I	_D = 10 A		3.94	4.38	mΩ
		V _{GS} = 4.5 V, I	_D = 10 A		5.96	7.25	
Forward Transconductance	9FS	V _{DS} = 5 V, I _E) = 10 A		44		S
Gate Resistance	R_{G}	T _A = 25	°C		0.7		Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1.0 MHz			1255		pF
Output Capacitance	C _{oss}				625		1
Reverse Transfer Capacitance	C _{rss}				20		1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 10 \text{ A}$			8		nC
Threshold Gate Charge	Q _{G(TH)}				2		nC
Gate-to-Source Charge	Q _{GS}				3		1
Gate-to-Drain Charge	Q_{GD}				2		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 10 A			18		nC
SWITCHING CHARACTERISTICS, V	_{SS} = 4.5 V (Note	5)					
Turn-On Delay Time	t _{d(on)}				12		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _E	on = 15 V.		5.5		
Turn-Off Delay Time	t _{d(off)}	$I_D = 10 \text{ A}, R_0$	$_{\rm G} = 6 \Omega$		16.5		1
Fall Time	t _f				5.7		1
SWITCHING CHARACTERISTICS, V	as = 10 V (Note	5)					
Turn-On Delay Time	t _{d(on)}				8.2		ns
Rise Time	t _r	V _{GS} = 10 V. V _G	nn = 15 V.		2.2		1
Turn-Off Delay Time	t _{d(off)}	V_{GS} = 10 V, V_{DD} = 15 V, I_{D} = 10 A, R_{G} = 6 Ω			23.2		1
Fall Time	t _f				3.5		1
PRAIN-SOURCE DIODE CHARACTE	RISTICS						•
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.79	1.2	V
		$I_S = 10 \text{ A}$	v (3S – U v,		0.65		1
Reverse Recovery Time	t _{RR}	Voc = 0 V dlo/dt	= 100 A/us		31		ns
Reverse Recovery Charge	Q _{RR}	$V_{GS} = 0 \text{ V, } dl_S/dt = 100 \text{ A/}\mu\text{s},$ $l_S = 10 \text{ A}$			12.5		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: Pulse Width $\leq 300~\mu s$, Duty Cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.

NTLJS5D0N03C

TYPICAL CHARACTERISTICS

T_J, JUNCTION TEMPERATURE (°C)

Figure 5. On-Resistance Variation with

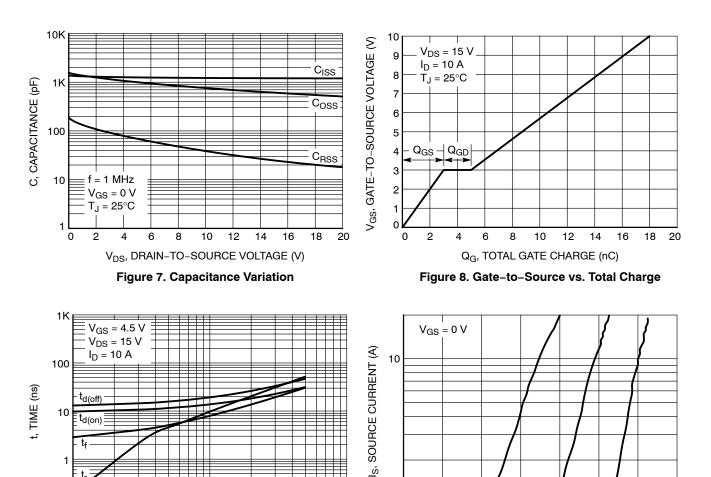

Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

NTLJS5D0N03C

TYPICAL CHARACTERISTICS

 $\label{eq:RG} \textbf{R}_{\textbf{G}}, \textbf{GATE RESISTANCE} \; (\Omega)$ Figure 9. Resistive Switching Time Variation vs. Gate Resistance

10

 $\label{eq:VSD} V_{SD}, \text{SOURCE-TO-DRAIN VOLTAGE (V)} \\ \textbf{Figure 10. Diode Forward Voltage vs. Current}$

0.7

0.8

 $T_J = 25^{\circ}C$

0.6

 $T_J = -55^{\circ}C$

0.9

 $T_{\rm J} = 125^{\circ}{\rm C}$

0.4

0.3

DEVICE ORDERING INFORMATION

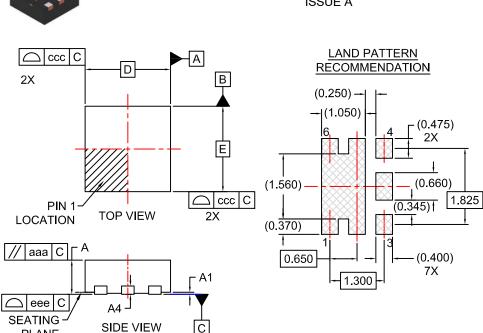
0.1

Device	Package	Shipping [†]
NTLJS5D0N03CTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel

100

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

e1


BOTTOM VIEW

PLANE

E2

L5 D2 D3

е

bbbM|C|A|B

ddd(M)

b (6X)

۲k1

L3

(4X) L 🗐

WDFN6 2.05X2.05, 0.65P CASE 483AV **ISSUE A**

DATE 02 APR 2019

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS.
- 2. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MILLIMETERS				
J	MIN.	NOM.	MAX.		
Α	0.60	0.70	0.80		
A1	0.00	-	0.05		
A4		(0.20)			
b	0.25	0.30	0.35		
D	1.95	2.05	2.15		
D2	0.84	0.89	0.94		
D3		(0.95)			
Е	1.95 2.05 2.15				
E2	1.45 1.50 1.55				
е	0.65 BSC				
e1	1.30 BSC				
k	(0.35)				
k1		(0.45)			
L	0.18	0.28	0.38		
L3	0.25	0.30	0.35		
L4	0.55	0.60	0.65		
L5	(0.23)				
aaa	0.10				
bbb	0.10				
ccc	0.05				
ddd	0.05				
eee	0.05				

DOCL	JMENT NUMBER:	98AON13671G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
	DESCRIPTION:	WDFN6 2.05X2.05, 0.65P		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

IRFD120 JANTX2N5237 BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY IPS70R2K0CEAKMA1 SQD23N06-31L-GE3
TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7
STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B
IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y-TP MCQ7328-TP NTMC083NP10M5L BXP7N65D BXP4N65F AOL1454G
WMJ80N60C4 BXP2N20L BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13
SLF10N65ABV2 BSO203SP BSO211P IPA60R230P6