Power MOSFET and Schottky Diode

30 V, N-Channel with 0.5 A Schottky Barrier Diode, 1.6 x 1.6 x 0.55 mm µCool™ Package

Features

- Low Qg and Capacitance to Minimize Switching Losses
- Low Profile UDFN 1.6x1.6 mm for Board Space Saving
- Low VF Schottky Diode
- ESD Protected Gate
- This is a Halide-Free Device
- This is a Pb-Free Device

Applications

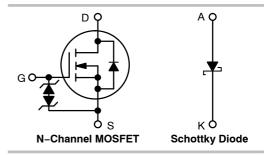
- DC-DC Boost Converter
- Color Display and Camera Flash Regulators
- Optimized for Power Management Applications for Portable Products, such as Cell Phones, PMP, DSC, GPS, and others

MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise stated)

Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Volt	age		V _{GS}	±8.0	V
Continuous Drain	Steady State	T _A = 25°C	I _D	1.5	Α
Current (Note 1)	State	T _A = 85°C		1.1	
	t ≤ 5 s	T _A = 25°C		1.9	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.8	W
	t ≤ 5 s	T _A = 25°C		1.3	
Continuous Drain	Steady	T _A = 25°C	I _D	1.2	Α
Current (Note 2)	State	T _A = 85°C		0.9	
Power Dissipation (Note 2) T _A = 25°C		P _D	0.5	W	
Pulsed Drain Currer	I _{DM}	8.0	Α		
MOSFET Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Schottky Operating Junction & Storage Temperature			T _J , T _{STG}	-55 to 125	°C
Source Current (Body Diode) (Note 2)			Is	1.5	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C
Gate-to-Source ESI (HBM) per JESD22-			ESD	1000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.


ON Semiconductor®

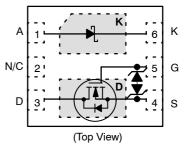
http://onsemi.com

MOSFET					
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX			
	200 mΩ @ 4.5 V	1.5 A			
30 V	250 mΩ @ 3.0 V	0.5 A			
	350 mΩ @ 2.5 V	0.5 A			

SCHOTTKY DIODE

V _R MAX	V _F TYP	I _F MAX
30 V	0.52 V	0.5 A

MARKING DIAGRAM


UDFN6 CASE 517AT μCOOL™

AA = Specific Device Code M = Date Code

■ = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

DEVICE ORDERING INFORMATION

Device	Package	Shipping †
NTLUF4189NZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUF4189NZTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Schottky Diode Maximum Ratings (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Units
Peak Repetitive Reverse Voltage	V_{RRM}	30	٧
DC Blocking Voltage	V_{R}	30	V
Average Rectified Forward Current	I _F	0.5	Α

Thermal Resistance Ratings

Parameter	Symbol	Max	Units
Junction-to-Ambient – Steady State (Note 3)	$R_{\theta JA}$	155	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 3)	$R_{\theta JA}$	100	
Junction-to-Ambient – Steady State min Pad (Note 4)	$R_{\theta JA}$	245	

MOSFET Electrical Characteristics (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS				-			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, ref to 25°C			22		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$				1.0	μΑ
		$V_{DS} = 24 \text{ V}$	T _J = 85°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	_{GS} = ± 8.0 V			10	μΑ
ON CHARACTERISTICS (Note 5)					•		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		0.4	1.1	1.5	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J				3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 1.5 A V _{GS} = 3.0 V, I _D = 0.5 A			145	200	mΩ
					185	250	1
		V _{GS} = 2.5 \	V, I _D = 0.5 A		220	350	
Forward Transconductance	9FS	V _{DS} = 4.0 V, I _D = 0.15 A			1.1		S
CHARGES & CAPACITANCES					•		•
Input Capacitance	C _{ISS}				95		pF
Output Capacitance	Coss		, f = 1 MHz, - 15 V		15		
Reverse Transfer Capacitance	C _{RSS}	V _{DS} = 15 V			10		
Total Gate Charge	Q _{G(TOT)}				1.4	3.0	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V.	Vns = 15 V:		0.2		
Gate-to-Source Charge	Q_GS	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V};$ $I_{D} = 1.5 \text{ A}$			0.4		1
Gate-to-Drain Charge	Q_{GD}				0.4		

- 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces)
- 4. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.
- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%
- 6. Switching characteristics are independent of operating junction temperatures

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 6)				I.	I	ı
Turn-On Delay Time	t _{d(ON)}				7.0		ns
Rise Time	t _r	Voc = 45 V Voc = 15 V			4.5		
Turn-Off Delay Time	t _{d(OFF)}	V _{GS} = 4.5 V, I _D = 1A, I	$R_G = 6 \Omega$		10.2		
Fall Time	t _f	1			1.2		
DRAIN-SOURCE DIODE CHARACTER	RISTICS				I.	I	ı
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	V _{0.0} = 0 V T _J = 25°C		0.8	1.2	V
		I _S = 1A	T _J = 85°C		0.75		
Reverse Recovery Time	t _{RR}				10.5		ns
Charge Time	t _a	Voe = 0 V dler	s/dt = 100 A/us		8.9		
Discharge Time	t _b	$V_{GS} = 0 \text{ V, dI}_{SE}$	1 A		1.6		
Reverse Recovery Charge	Q _{RR}				2.1		nC
SCHOTTKY DIODE ELECTRICAL CHA	ARACTERISTICS	(T _J = 25°C unless of	herwise specified)		•		
Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
Maximum Instantaneous Forward	V _F	l _F = 1	0 mA		0.27	0.37	V
Voltage		I _F = 100 mA			0.36	0.46	
		I _F = 50	I _F = 500 mA		0.52	0.62	
Maximum Instantaneous	I _R	V _R =	10 V		2.0	10	μΑ
Reverse Current		V _R =	30 V		20	200	1
SCHOTTKY DIODE ELECTRICAL CH	ARACTERISTICS	(T _J = 85°C unless of	herwise specified)			•	
Maximum Instantaneous	V _F	I _F = 10 mA			0.2		V
Forward Voltage		I _F = 10	I _F = 100 mA		0.3		1
		I _F = 50	I _F = 500 mA		0.51		
Maximum Instantaneous	I _R	V _R =	10 V		80		μΑ
Reverse Current		V _R = 30 V			525	525	
SCHOTTKY DIODE ELECTRICAL CHA	ARACTERISTICS	(T _J = 125°C unless of	otherwise specified)	•			•
Maximum Instantaneous	V _F	I _F = 10 mA			0.14		V
Forward Voltage		I _F = 10	00 mA		0.27		
		I _F = 50	00 mA		0.51		
Maximum Instantaneous	I _R	V _R =	10 V		600		μΑ
Reverse Current		V _R =	30 V		3000		
SCHOTTKY DIODE ELECTRICAL CH	ARACTERISTICS	(T _J = 25°C unless of	herwise specified)	1	1	1	1
Capacitance	С		= 1.0 MHz		6.0		pF
Capacitario		11 /					

- 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces) 4. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 6. Switching characteristics are independent of operating junction temperatures

TYPICAL MOSFET CHARACTERISTICS

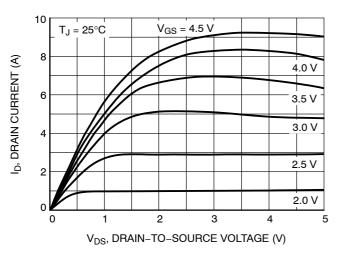


Figure 1. On-Region Characteristics

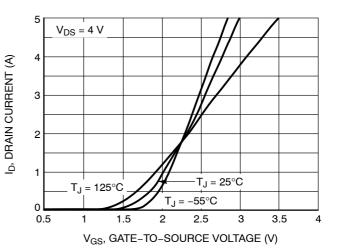


Figure 2. Transfer Characteristics

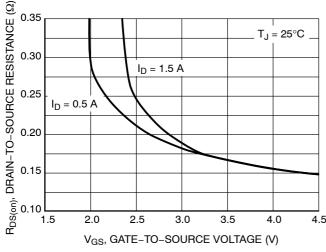


Figure 3. On-Resistance vs. Gate Voltage

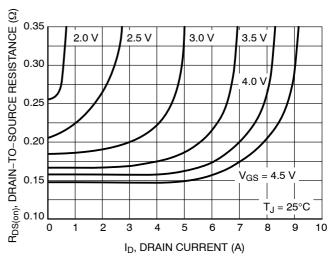


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

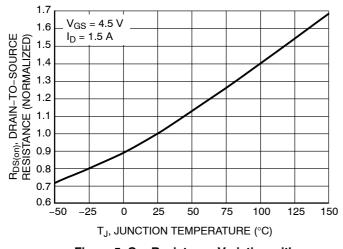


Figure 5. On–Resistance Variation with Temperature

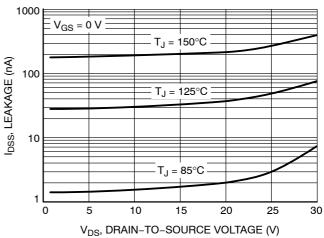


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL MOSFET CHARACTERISTICS

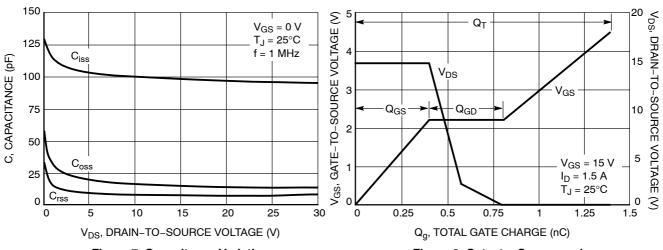
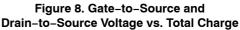



Figure 7. Capacitance Variation

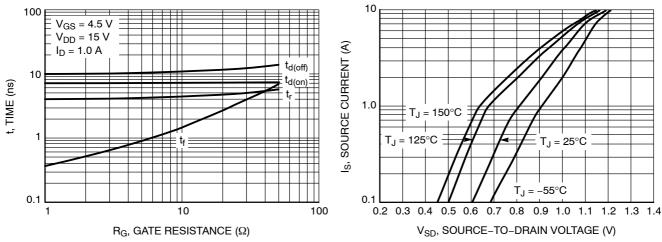


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

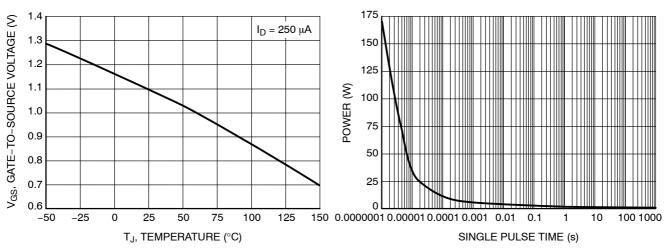


Figure 11. Threshold Voltage

Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL MOSFET CHARACTERISTICS

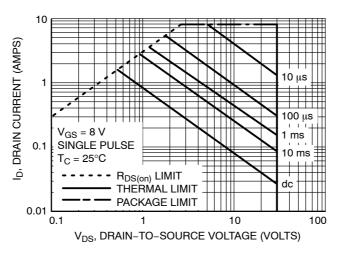


Figure 13. Maximum Rated Forward Biased Safe Operating Area



Figure 14. FET Thermal Response

TYPICAL SCHOTTKY CHARACTERISTICS

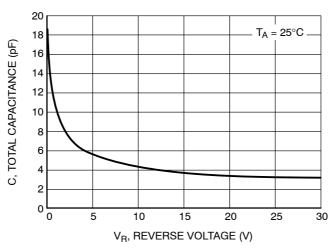


Figure 15. Total Capacitance

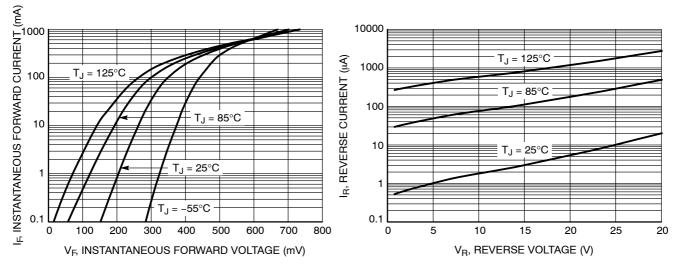
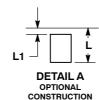
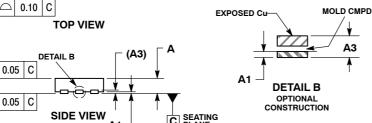
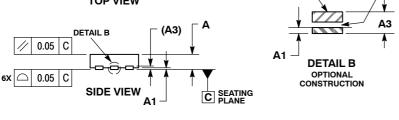
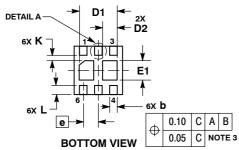


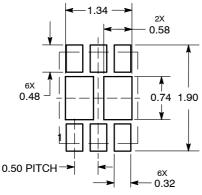
Figure 16. Typical Forward Voltage


Figure 17. Typical Reverse Current


- D


0.10 C


PIN ONE REFERENCE



SOLDERMASK DEFINED MOUNTING FOOTPRINT*

DIMENSIONS: MILLIMETERS

DATE 02 SEP 2008

NOTES

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED
- PAD AS WELL AS THE TERMINALS.

	MILLIM	MILLIMETERS				
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
A3	0.13	REF				
b	0.20	0.30				
D	1.60	BSC				
E	1.60	1.60 BSC				
е	0.50	BSC				
D1	1.14	1.34				
D2	0.38	0.58				
E1	0.54	0.74				
K	0.20					
L	0.15	0.35				
L1		0.10				

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb-Free strategy and soldering

DOCUMENT NUMBER:	98AON32372E	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION	6 PIN UDEN 1 6X1 6 0 5P	•	PAGE 1 OF 1	

are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B