MOSFET – Power, Single, N-Channel, μCool, UDFN6, 2.0x2.0x0.55 mm 30 V, 6.1 A

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 2.0 x 2.0 x 0.55 mm for Board Space Saving
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

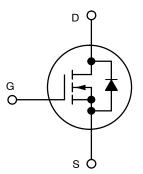
Applications

- Battery Switch
- Power Load Switch
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage		V_{DSS}	30	V	
Gate-to-Source Voltage		V_{GS}	±20	V	
Continuous Drain	Steady	T _A = 25°C	I _D	6.1	Α
Current (Note 1) Continuous Drain	State	T _A = 85°C		4.4	
Current (Note 1)	t ≤ 5 s	T _A = 25°C		9.3	
Power Dissipa- tion (Note 1)	Steady State	T _A = 25°C	P _D	1.65	W
	t ≤ 5 s	T _A = 25°C		3.8	
Continuous Drain	Steady State	T _A = 25°C	I _D	3.8	Α
Current (Note 2)	State	T _A = 85°C		2.8	
Power Dissipation (Note 2) T _A = 25°C		P _D	0.65	W	
Pulsed Drain Current tp = 10 μs		I _{DM}	19	Α	
MOSFET Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to 150	°C	
Source Current (Body Diode) (Note 1)		I _S	1.65	Α	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

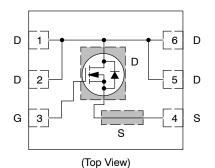

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ON Semiconductor®

http://onsemi.com

MOSFET				
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
30 V	36 mΩ @ 4.5 V	6.1 A		
	28.5 mΩ @ 10 V	5.5 A		

N-CHANNEL MOSFET


S MARKING DIAGRAM UDFN6 (µCOOL™) CASE 517BG MARKING DIAGRAM AD M CASE 517BG

AD = Specific Device Code M = Date Code

= Pb-Free Package

(*Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{\theta JA}$	75.7	
Junction-to-Ambient – t ≤ 5 s (Note 3)	$R_{\theta JA}$	32.9	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	$R_{\theta JA}$	191.4	

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

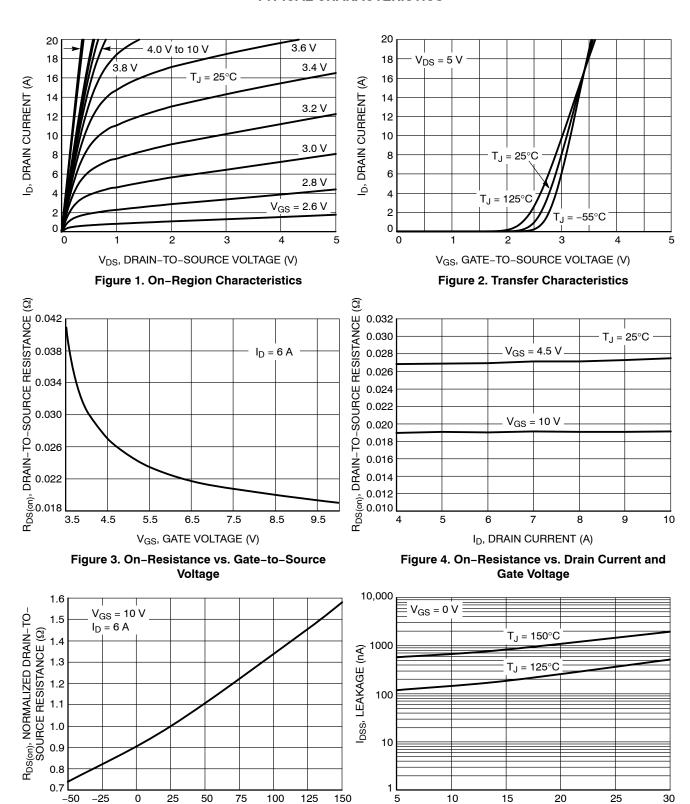
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

ParameterSymbolTest ConditionMinTypOFF CHARACTERISTICSDrain-to-Source Breakdown Voltage Temperature Coefficient $V_{(BR)DSS}$ $V_{GS} = 0 \text{ V}, I_D = 250 \text{ μA}$ 30Drain-to-Source Breakdown Voltage Temperature Coefficient $V_{(BR)DSS}/T_J$ $I_D = 250 \text{ μA}, \text{ ref to } 25^{\circ}\text{C}$ +16Zero Gate Voltage Drain Current I_{DSS} $V_{GS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ $V_{JS} = 24 \text{ V}$ $V_{JS} = 24 \text{ V}$ Gate-to-Source Leakage Current I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ $V_{JS} = \pm 20 \text{ V}$ ON CHARACTERISTICS (Note 5)Gate Threshold Voltage $V_{GS}(TH)$ $V_{GS} = V_{DS}, I_D = 250 \text{ μA}$ 1.21.8Negative Threshold Temp. Coefficient $V_{GS}(TH)/T_J$ 4.4Drain-to-Source On Resistance $V_{GS}(TH)/T_J$ 4.4Forward Transconductance $V_{SS}(TH)/T_S$ $V_{SS}(TH)/T_S = 0.0 \text{ A}$ 16	1.0 10 2.2 28.5 36	V mV/°C μA μA V mV/°C mΩ mΩ
Drain-to-Source Breakdown Voltage $V_{(BR)DSS}$ $V_{GS} = 0 \text{ V}, I_D = 250 \text{ μA}$ 30Drain-to-Source Breakdown Voltage Temperature Coefficient $V_{(BR)DSS}/T_J$ $I_D = 250 \text{ μA}, \text{ ref to } 25^{\circ}\text{C}$ $+16$ Zero Gate Voltage Drain Current I_{DSS} $V_{GS} = 0 \text{ V}, V_{DS} = 24 \text{ V}$ $T_J = 25^{\circ}\text{C}$ Gate-to-Source Leakage Current I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ ON CHARACTERISTICS (Note 5)Gate Threshold Voltage $V_{GS}(TH)$ $V_{GS} = V_{DS}, I_D = 250 \text{ μA}$ 1.21.8Negative Threshold Temp. Coefficient $V_{GS}(TH)/T_J$ 4.4Drain-to-Source On Resistance $R_{DS}(on)$ $V_{GS} = 10 \text{ V}, I_D = 6.1 \text{ A}$ 19 $V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$ 27	2.2	mV/°C μA μA V mV/°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	mV/°C μA μA V mV/°C
Temperature Coefficient	2.2	μA μA V mV/°C
$V_{DS} = 24 \text{ V}$ Gate-to-Source Leakage Current I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ ON CHARACTERISTICS (Note 5) Gate Threshold Voltage $V_{GS(TH)}$ $V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ 1.2 1.8 Negative Threshold Temp. Coefficient $V_{GS(TH)}/T_J$ 4.4 Drain-to-Source On Resistance $R_{DS(on)}$ $V_{GS} = 10 \text{ V}, I_D = 6.1 \text{ A}$ 19 $V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$ 27	2.2	μA V mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	V mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.5	mV/°C
Negative Threshold Temp. Coefficient $V_{GS(TH)}/T_J$ 4.4 Drain-to-Source On Resistance $R_{DS(on)}$ $V_{GS} = 10 \text{ V}, I_D = 6.1 \text{ A}$ 19 $V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$ 27	28.5	mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	· ·
$V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$ 27	_	mΩ
	36	_
Forward Transcenductores a V 15VI 60A		
Forward Transconductance g_{FS} $V_{DS} = 1.5 \text{ V}, I_D = 6.0 \text{ A}$ 16		S
CHARGES, CAPACITANCES & GATE RESISTANCE		
Input Capacitance C _{ISS} 476		pF
Output Capacitance C_{OSS} $V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} \\ V_{DS} = 15 \text{ V}$ 197		
Reverse Transfer Capacitance C _{RSS} 100		
Total Gate Charge Q _{G(TOT)} 4.8		nC
Threshold Gate Charge $Q_{G(TH)}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V};$ 0.4 Gate-to-Source Charge Q_{GS}		
Gate-to-Source Charge Q_{GS} $I_D = 5.5 \text{ A}$ 1.54		
Gate-to-Drain Charge Q _{GD} 2.15		1
$Q_{G(TOT)}$ $V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V};$ $I_{D} = 5.5 \text{ A}$ 8.7		nC
SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 6)		-
Turn-On Delay Time t _{d(ON)} 8.7		ns
Rise Time t_r $V_{GS} = 4.5 \text{ V}, V_{DD} = 15 \text{ V},$ 14.4	1	
Turn-Off Delay Time $t_{d(OFF)}$ $I_D = 5.5 \text{ A}, R_G = 3 \Omega$ 9.1	1	
Fall Time t _f 3.3	1	1
SWITCHING CHARACTERISTICS, VGS = 10 V (Note 6)		
Turn-On Delay Time t _{d(ON)} 4.1	\top	ns
Rise Time t_r $V_{GS} = 10 \text{ V}, V_{DD} = 15 \text{ V},$ 12.2	+	1
Turn-Off Delay Time $t_{d(OFF)}$ $I_D = 6.1 \text{ A}, R_G = 3 \Omega$ 11.6	1	1
Fall Time t _f 2.2	1	1
DRAIN-SOURCE DIODE CHARACTERISTICS		
Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V},$ $T_J = 25^{\circ}\text{C}$ 0.80	1.0	V
$I_{S} = 1.65 \text{ A}$ $I_{J} = 125^{\circ}\text{C}$ 0.67	+	1

- 5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
DRAIN-SOURCE DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}			14.6		ns
Charge Time	t _a	V_{GS} = 0 V, dIs/dt = 100 A/ μ s, I _S = 3.3 A		6.8		
Discharge Time	t _b			7.8		
Reverse Recovery Charge	Q _{RR}			5.4		nC


DEVICE ORDERING INFORMATION

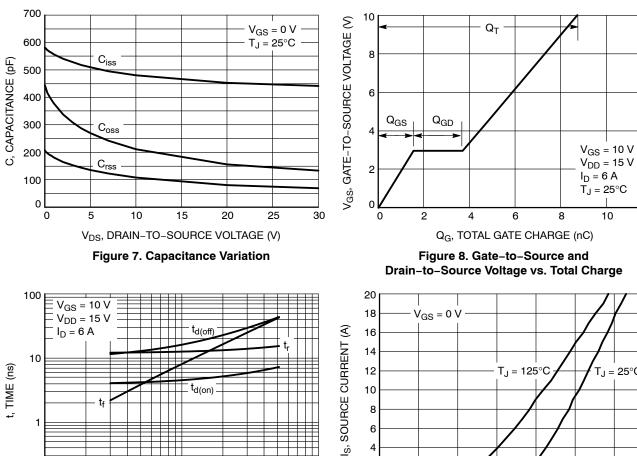
Device	Package	Shipping [†]
NTLUS4930NTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS4930NTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{5.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

T_J, JUNCTION TEMPERATURE (°C)

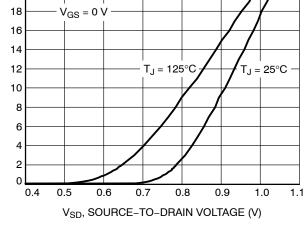

Figure 5. On-Resistance Variation with

Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

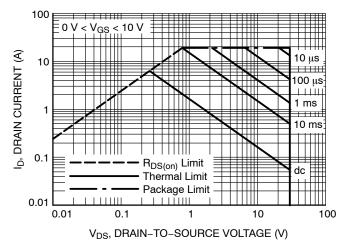
Figure 6. Drain-to-Source Leakage Current
vs. Voltage

TYPICAL CHARACTERISTICS


 R_G , GATE RESISTANCE (Ω) Figure 9. Resistive Switching Time Variation vs. Gate Resistance

10

 $t_{d(on)}$


 t_{f}

0.1

12

Figure 10. Diode Forward Voltage vs. Current

100

Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

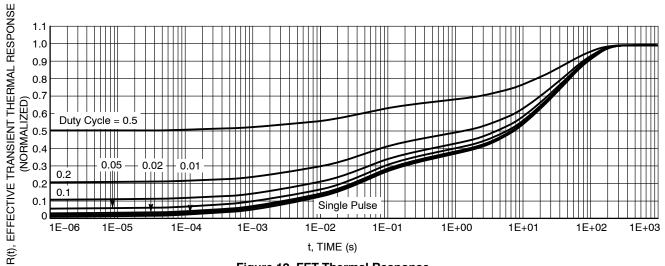
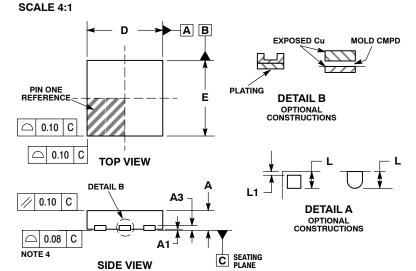


Figure 12. FET Thermal Response

DETAIL A

6X L


E2

J1

BOTTOM VIEW

DATE 04 FEB 2010

С 0.10

0.05 C NOTE 5

NOTE 3

Ф

0.10 С Α

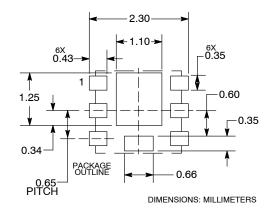
С 0.05

Α

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS
 MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS
 THE TERMINALS. 3.
- 1. CENTER TERMINAL LEAD IS OPTIONAL CENTER TERMINAL IS CONNECTED TO TERMINAL LEAD # 4.
 2. LEADS 1, 2, 5 AND 6 ARE TIED TO THE FLAG.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45 0.55			
A1	0.00	0.05		
A3	0.13	REF		
b	0.25	0.35		
b1	0.51	0.61		
D	2.00 BSC			
D2	1.00 1.20			
E	2.00 BSC			
E2	1.10	1.30		
е	0.65 BSC			
K	0.15 REF			
J	0.27 BSC			
J1	0.65 BSC			
L	0.20	0.30		
L1	1	0.10		
L2	0.20	0.30		

GENERIC MARKING DIAGRAM*


XX = Specific Device Code

M = Date Code

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

RECOMMENDED **MOUNTING FOOTPRINT**

DOCUMENT NUMBER:	98AON48158E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6 2X2, 0.65P		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B