MOSFET – Power, Single, P-Channel, Schottky Diode, Schottky Barrier Diode -30 V, -4.0 A, 20 V, 2.2 A

NTMD4184PF

Features

- FETKY™ Surface Mount Package Saves Board Space
- Independent Pin-Out for MOSFET and Schottky Allowing for Design Flexibility
- Low R_{DS(on)} MOSFET and Low V_F Schottky to Minimize Conduction Losses
- Optimized Gate Charge to Minimize Switching Losses
- This is a Pb-Free Device

Applications

- Disk Drives
- DC-DC Converters
- Printers

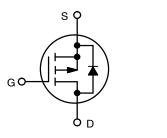
MOSFET MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Ratir	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	-30	V		
Gate-to-Source Voltage	V_{GS}	±20	V		
Continuous Drain		T _A = 25°C	I _D	-3.3	Α
Current R _{θJA} (Note 1)		T _A = 70°C		-2.6	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	1.6	W
Continuous Drain]	T _A = 25°C		-2.3	Α
Current R _{θJA} (Note 2)	Steady	T _A = 70°C		-1.8	
Power Dissipation R ₀ JA (Note 2)	State	T _A = 25°C	P _D	0.77	W
Continuous Drain		T _A = 25°C	I _D	-4.0	Α
Current R _{0JA} t < 10 s (Note 1)		T _A = 70°C		-3.2	
Power Dissipation R _{θJA} t < 10 s (Note 1)		T _A = 25°C	P _D	2.31	W
Pulsed Drain Current	Pulsed Drain Current $T_A = 25^{\circ}C$, $t_p = 10 \mu s$				Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to +150	°C
Source Current (Body Di	I _S	-1.3	Α		
Lead Temperature for So (1/8" from case for 10 s)	oldering P	urposes	T _L	260	°C

SCHOTTKY MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Peak Repetitive Reverse Voltage	V_{RRM}	20	V	
DC Blocking Voltage	V_R	20	V	
Average Rectified Forward Current, (Note 1)	Steady State	ΙF	2.2	Α
	t < 10 s		3.2	

ON Semiconductor®

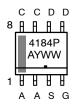

www.onsemi.com

P-CHANNEL MOSFET

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
-30 V	95 mΩ @ –10 V	-4.0 A
55 7	165 mΩ @ –4.5 V	1.071

SCHOTTKY DIODE

V _R Max	V _F Max	I _F Max
20 V	0.58 V	2.2 A


P-Channel MOSFET

Schottky Diode

MARKING DIAGRAM & PIN ASSIGNMENT

SOIC-8 CASE 751 STYLE 18

4184P = Device Code A = Assembly Location

Y = Year
WW = Work Week
Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMD4184PFR2G	SOIC-8 (Pb-Free)	2500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter MOSFET & Schottky	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	79	
Junction-to-Ambient – t ≤10 s Steady State (Note 1)	$R_{ heta JA}$	54	°C/W
Junction-to-FOOT (Drain) Equivalent to $R_{\theta JC}$	$R_{ heta JF}$	50	C/VV
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	163	

- Surface-mounted on FR4 board using 1 inch sq pad size, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

Characteristic	Symbol	Test Co	ndition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _I	n = 250 μA	-30	1	1	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J		· · · · · · · · · · · · · · · · · · ·		30		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -24 V	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$			-1.0 -10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	GS = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)	•			•	•	•	•
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I	_D = 250 μA	-1.0		-3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V	$I_D = -3.0 \text{ A}$		70	95	0
		V _{GS} = -4.5 V	$I_D = -1.5 A$		120	165	mΩ
Forward Transconductance	9FS	$V_{DS} = -1.5 \text{ V}, I_D = -3.0 \text{ A}$			5.0		S
CHARGES, CAPACITANCES AND GATE RE	SISTANCE						
Input Capacitance	C _{ISS}			280	360	pF	
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -10 \text{ V}$			80		110
Reverse Transfer Capacitance	C _{RSS}				52		80
Total Gate Charge	Q _{G(TOT)}				2.8	4.2	
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$			0.4		nC
Gate-to-Source Charge	Q _{GS}	I _D = -3	3.0 A		1.1		
Gate-to-Drain Charge	Q_{GD}				1.1		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -10 \text{ V}, V_{DS} = -10 \text{ V},$ $I_D = -3.0 \text{ A}$			5.8	8.8	nC
SWITCHING CHARACTERISTICS (Note 4)				•	•	•	•
Turn-On Delay Time	t _{d(ON)}				7.2	15	
Rise Time	t _r	$V_{GS} = -10 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -1.0 \text{ A}, R_{G} = 6.0 \Omega$			12	24	ns
Turn-Off Delay Time	t _{d(OFF)}				18	36	
Fall Time	t _f				2.6	6.0	
DRAIN-TO-SOURCE CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V	T _J = 25°C		-0.8	-1.0	V
		$I_{\rm D} = -1.3 {\rm A}$	T _J = 125°C		0.7		
Reverse Recovery Time	t _{RR}				12.8		
Charge Time	ta	$V_{GS} = 0 \text{ V}, d_{IS}/c$	d _t = 100 A/μs,		10		ns
Discharge Time	t _b	I _S = -		2.8			
Reverse Recovery Time	Q_{RR}				7.4		nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol		Test Condition	Min	Тур	Max	Unit
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T. 0500 values attention noted)							

	SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS	T)	1 = 25°C unless otherwise noted)
--	---	----	----------------------------------

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 1.0 A	T _J = 25°C		0.43	0.50	V
Forward Voltage			T _J = 125°C		0.35	0.39	
		I _F = 2.0 A	T _J = 25°C		0.5	0.58	
			T _J = 125°C		0.45	0.53	
Maximum Instantaneous	I _R	V _R = 10 V	T _J = 25°C		0.001	0.02	mA
Reverse Current			T _J = 125°C		1.2	14	
		V _R = 20 V	T _J = 25°C		0.004	0.05	
			T _J = 125°C		2.0	18	

- 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

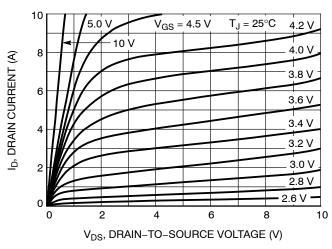


Figure 1. On-Region Characteristics

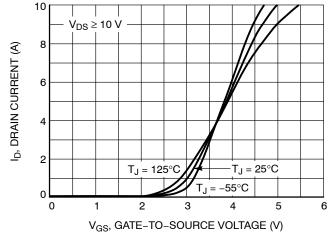


Figure 2. Transfer Characteristics

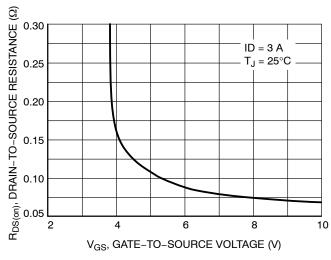


Figure 3. On-Resistance vs. Gate Voltage

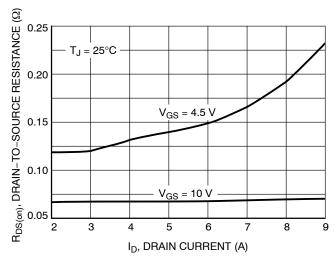
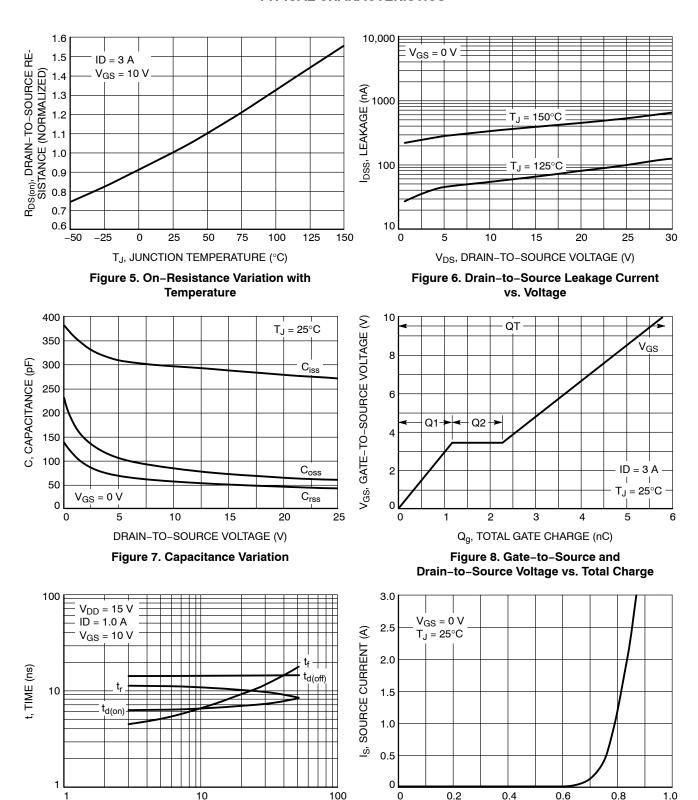



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS

 $\label{eq:RG} \textbf{R}_{\textbf{G}}, \, \textbf{GATE RESISTANCE} \; (\Omega)$ Figure 9. Resistive Switching Time Variation vs. Gate Resistance

 V_{SD} , SOURCE-TO-DRAIN VOLTAGE (V) Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS



Figure 11. Thermal Response – $R_{\theta JA}$ at Steady State (min pad)

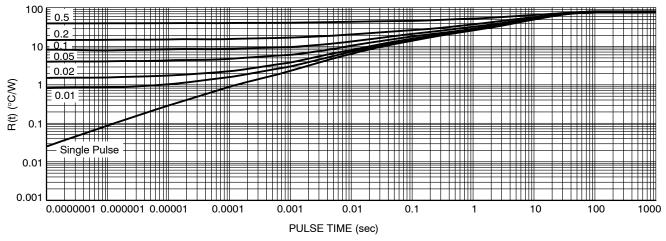


Figure 12. Thermal Response – $R_{\theta JA}$ at Steady State (1 inch sq pad)

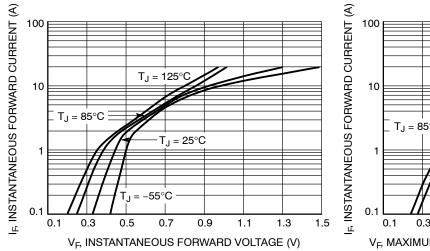


Figure 13. Typical Forward Voltage

Figure 14. Maximum Forward Voltage

TYPICAL CHARACTERISTICS

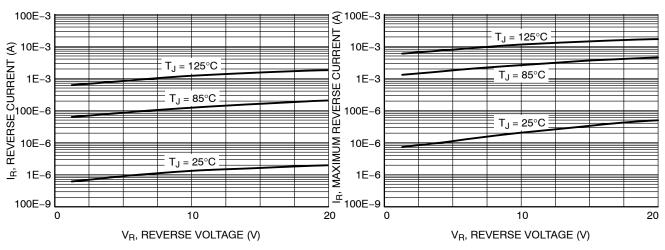
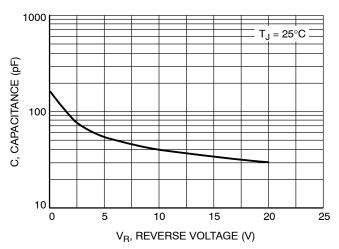
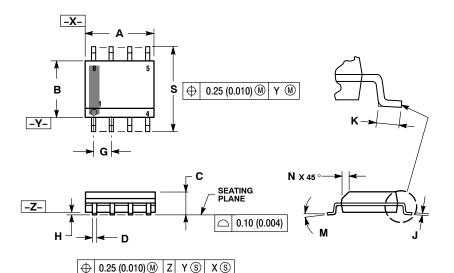


Figure 15. Typical Reverse Current

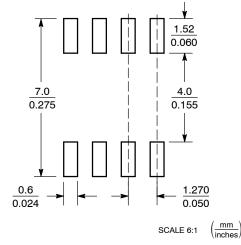
Figure 16. Maximum Reverse Current



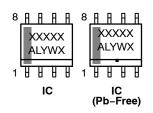

Figure 17. Capacitance

FETKY is a registered trademark of International Rectifier Corporation.

SOIC-8 NB CASE 751-07 **ISSUE AK**

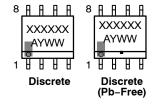

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33 0.51 0.01		0.013	0.020		
G	1.27	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010		
7	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww

= Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED of the control of	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 4: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 2 4. ANODE 5. ANODE #2 6. ANODE #2 7. ANODE #1 8. COMMON CATHODE
STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 STAGE Vd 7. EMITTER, #1 AGE Vd 8. COLLECTOR, #1
STYLE 12: 1 PIN 1. SOURCE 2 SOURCE 2 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COMMON 6. COLLECTOR, DIE #2 6. COMMON 7. COLLECTOR, DIE #1 6. COMMON 8. COLLECTOR, DIE #1
STYLE 20: 1 PIN 1. SOURCE (N) 2. GATE (N) 2 3. SOURCE (P) 4. GATE (P) 5. DRAIN 2 6. DRAIN 7. DRAIN 1 8. DRAIN
STYLE 24:
STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND E 5. V_MON E 6. VBULK E 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B