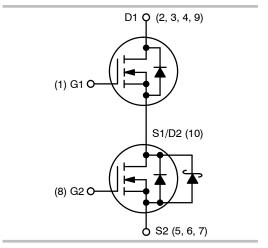
MOSFET – Power, Dual, N-Channel with Integrated Schottky, SO8FL

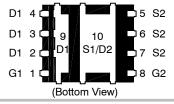
30 V, High Side 18 A / Low Side 30 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Low Side MOSFET with Integrated Schottky
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- DC-DC Converters
- System Voltage Rails
- Point of Load


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	6.5 mΩ @ 10 V	10 /
30 V	10 mΩ @ 4.5 V	18 A
Q2 Bottom	2.35 m Ω @ 10 V	30 A
FET 30 V	3.5 mΩ @ 4.5 V	30 A

PIN CONNECTIONS

MARKING DIAGRAM

DFN8 CASE 506BX

4901NF = Specific Device Code

A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter				Symbol	Value	Unit
Drain-to-Source Voltage			Q1	V _{DSS}	30	V
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage	Q1	V _{GS}	±20	V		
Gate-to-Source Voltage	Q2					
Continuous Drain Current R _{0JA} (Note 1)		T _A = 25°C	Q1	I _D	13.5	
		T _A = 85°C			9.7	1 .
		T _A = 25°C	Q2		23.4	A
		T _A = 85°C	1		16.9	
Power Dissipation R _{0JA} (Note 1)		T _A = 25°C	Q1	P _D	1.90	W
			Q2		2.07	
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	Q1	I _D	18.2	
		T _A = 85°C	1		13.1	1
	Steady	T _A = 25°C	Q2		30.3	A
	State	T _A = 85°C			21.8	
Power Dissipation $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	Q1	P _D	3.45	W
			Q2		3.45	
Continuous Drain Current R _{0JA} (Note 2)		T _A = 25°C	Q1	I _D	10.3	
		T _A = 85°C	1		7.4	1
		T _A = 25°C	Q2		17.9	A
		T _A = 85°C			12.9	
Power Dissipation R _{0JA} (Note 2)		T _A = 25 °C	Q1	P _D	1.10	W
			Q2		1.20	
Pulsed Drain Current		T _A = 25°C	Q1	I _{DM}	60	Α
		t _p = 10 μs	Q2		100	
Operating Junction and Storage Temperature			Q1	T _J , T _{STG}	-55 to +150	°C
			Q2			
Source Current (Body Diode)			Q1	I _S	3.4	Α
			Q2		4.9	1
Drain to Source dV/dt			•	dV/dt	6	V/ns
Single Pulse Drain-to-Source Avalanche Energy (T		24 A	Q1	EAS	28.8	mJ
= 50 V, V_{GS} = 10 V, I_L = XX A_{pk} , L = 0.1 mH, R_G = 28	5 Ω)	48 A	Q2	EAS	115	1
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)				T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

^{1.} Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.

^{2.} Surface-mounted on FR4 board using the minimum recommended pad size of 100 $\mbox{mm}^2.$

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	$R_{\theta JA}$	65.9	
	Q2		60.5	
Junction-to-Ambient - Steady State (Note 4)	Q1	$R_{\theta JA}$	113.2	0000
	Q2		104	°C/W
Junction-to-Ambient - (t ≤ 10 s) (Note 3)	Q1	$R_{\theta JA}$	36.2	
	Q2		36.2	

FI FCTRICAL CHARACTERISTICS (Tu = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
OFF CHARACTERISTICS								-
Drain-to-Source Break-	Q1	V _{(BR)DSS}	$V_{GS} = 0 V$,	I _D = 250 μA	30			V
down Voltage	Q2		V _{GS} = 0 V	I _D = 1 mA	30			1
Drain-to-Source Break-	Q1	V _{(BR)DSS}	(BR)DSS			18		mV /
down Voltage Temperature Coefficient	Q2	/T _J				15		°C
Zero Gate Voltage Drain	Q1	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
Current			$V_{DS} = 24 V$	T _J = 125°C			10	
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			500	
Gate-to-Source Leakage	Q1	I _{GSS}	V_{GS} = 0 V, VDS = ±20 V				±100	nA
Current	Q2						±100	1
ON CHARACTERISTICS (No	te 5)							
Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = 250 μA	1.2		2.2	V

Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = 250 μA	1.2		2.2	V
	Q2				1.2		2.2	
Negative Threshold Temperature Coefficient	Q1	V _{GS(TH)} / T _J				4.5		mV / °C
ature Coefficient	Q2	IJ				4.0		-0
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		5.2	6.5	
ance			V _{GS} = 4.5 V	I _D = 10 A		8.0	10	~ 0
	Q2		V _{GS} = 10 V	I _D = 20 A		1.9	2.35	mΩ
			V _{GS} = 4.5 V	I _D = 20 A		2.8	3.5	
Forward Transconductance	Q1	9FS	V _{DS} = 1.5 \	V, I _D = 10 A		28		S
	Q2					45		

^{3.} Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
4. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

^{5.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	& GATE	RESISTANC	E	-	-		<u>-</u>
	Q1				1150		
Input Capacitance	Q2	C _{ISS}			2950		
0.1-10	Q1	0	., .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		360		
Output Capacitance	Q2	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, V}_{DS} = 15 \text{ V}$		1100		pF
Daviera Caracitana	Q1	0			105		
Reverse Capacitance	Q2	C _{RSS}			82		
Total Cata Charge	Q1	0			9.7		
Total Gate Charge	Q2	$Q_{G(TOT)}$			20		
Throshold Gato Chargo	Q1	0			1.1		
Threshold Gate Charge	Q2	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 10 A		2.7		20
Gato to Source Charge	Q1	Q _{GS}	$v_{GS} = 4.5 \text{ v}, v_{DS} = 15 \text{ v}, v_{D} = 10 \text{ A}$		3.3		nC
Gate-to-Source Charge	Q2	QGS			7.3		
Gate-to-Drain Charge	Q1	0			3.7		
Gate-to-Diain Charge	Q2	Q_{GD}			5.3		
Total Gate Charge	Q1	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 10 A		19.1		nC
Total Gate Charge	Q2	Q G(101)	VGS = 10 V, VDS = 13 V, ID = 10 A		42.7		IIC
SWITCHING CHARACTERIS	TICS (No	te 6)					
Turn-On Delay Time	Q1	tuon			9.0		
rum-on belay fille	Q2	t _{d(ON)}			14		
Rise Time	Q1	t _r			15		
Tuse Time	Q2	чr	V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 10 A, R_{G} = 3.0 Ω		16		ne
Turn-Off Delay Time	Q1	tuorn	$I_D = 10 \text{ A}, R_G = 3.0 \Omega$		14		ns -
rum-on belay filme	Q2	t _{d(OFF)}			25		
Fall Time	Q1	t _f			4.0		
T dil Tillic	Q2	ተ			7.0		
SWITCHING CHARACTERIS	TICS (No	te 6)					
Turn-On Delay Time	Q1	tuon			6.0		
rum-on belay filme	Q2	t _{d(ON)}			10		
Rise Time	Q1	t _r			14		
1,,55 1,1110	Q2	ዣ	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 10 A, R_{G} = 3.0 Ω		15		ns
Turn-Off Delay Time	Q1	taronn	$I_{\rm D}$ = 10 A, $R_{\rm G}$ = 3.0 Ω		17		110
Tain on Bolay Time	Q2	t _{d(OFF)}			32		
Fall Time	Q1	t.			3.0		
i un IIIIIC	Q2	- t _f			5.0		

^{5.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS			•		•	
	04		V _{GS} = 0 V,	T _J = 25°C		0.75	1.0	
Face and Mallage	Q1	.,	I _S = 3 A	T _J = 125°C		0.62		1 ,,
Forward Voltage	00	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.45	0.70	V
	Q2		$V_{GS} = 0 V$, $I_S = 2 A$	T _J = 125°C		0.37		1
Davissa Davissa Tima	Q1					23		
Reverse Recovery Time	Q2	t _{RR}				40		1
Oharra Tima	Q1	1-				12		1
Charge Time	Q2	ta	V 0V 4 (4	400 4/ - 1 0 4		21		ns
Disabase Tree	Q1	11-	$V_{GS} = 0 \text{ V}, \alpha_{IS}/\alpha_{t} =$	$_{S}/d_{t} = 100 \text{ A}/\mu \text{s}, I_{S} = 3 \text{ A}$		11		
Discharge Time	Q2	tb				19		
De la Companya Changa	Q1	0				12		.0
Reverse Recovery Charge	Q2	Q_RR				40		nC
PACKAGE PARASITIC VALU	ES							
0	Q1					0.38		
Source Inductance	Q2	L _S				0.65		nH
Decided dece	Q1		1			0.054		
Drain Inductance	Q2	L _D	T		0.007		nH	
Oata laduatana	Q1	,	T _A = 25°C	25°C		1.5		-11
Gate Inductance	Q2	L _G				1.5		nH
Cata Danistana	Q1	Б	1			0.8		_
Gate Resistance	Q2	R_{G}				0.8		Ω

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFD4901NFT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4901NFT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{5.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1

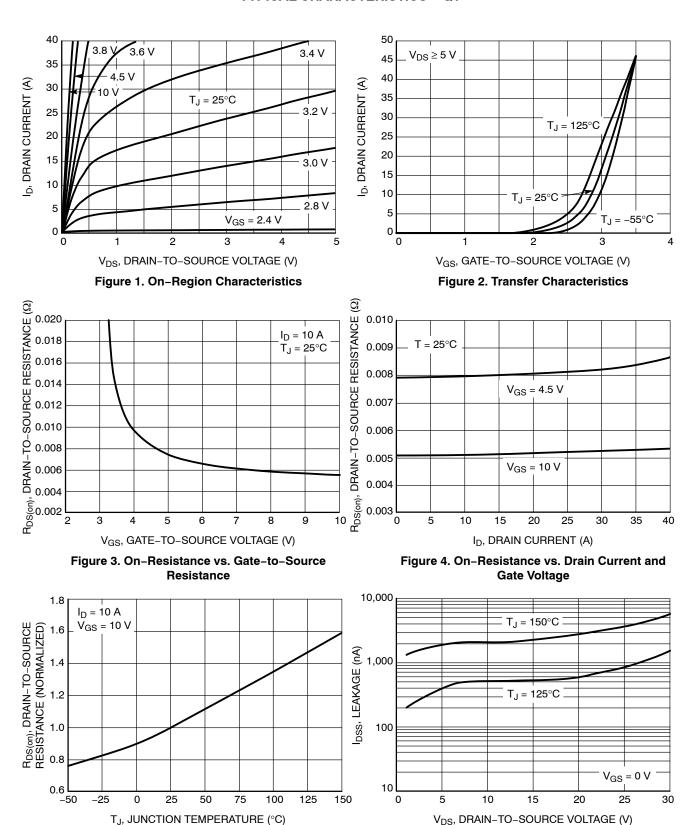


Figure 6. Drain-to-Source Leakage Current

vs. Voltage

Figure 5. On-Resistance Variation with

Temperature

TYPICAL CHARACTERISTICS - Q1

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

 R_G , GATE RESISTANCE (Ω)

 $\label{eq:VSD} V_{SD}, \text{SOURCE-TO-DRAIN VOLTAGE (V)}$ Figure 10. Diode Forward Voltage vs. Current

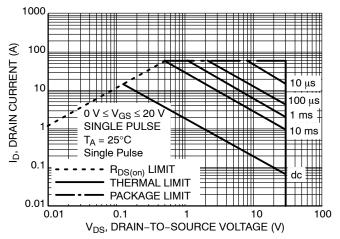


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS - Q1

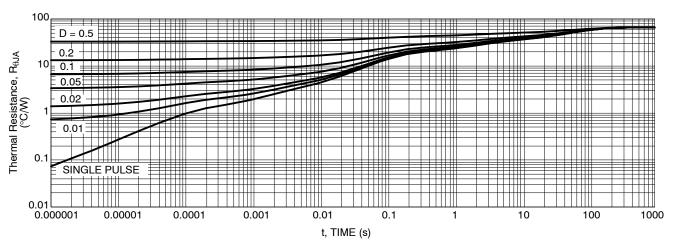


Figure 12. Thermal Response

TYPICAL CHARACTERISTICS - Q2

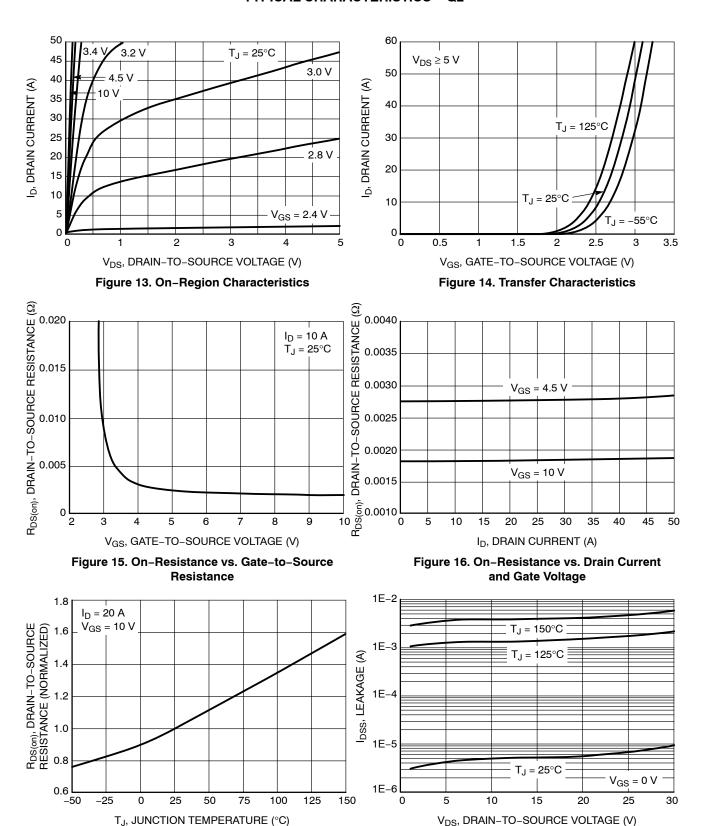


Figure 18. Drain-to-Source Leakage Current

vs. Voltage

Figure 17. On-Resistance Variation with

Temperature

TYPICAL CHARACTERISTICS - Q2

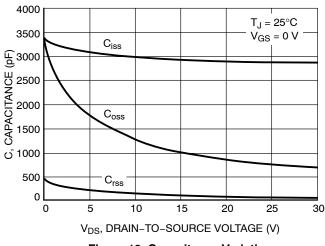


Figure 19. Capacitance Variation

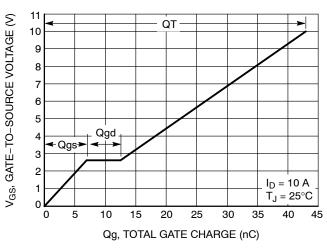


Figure 20. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

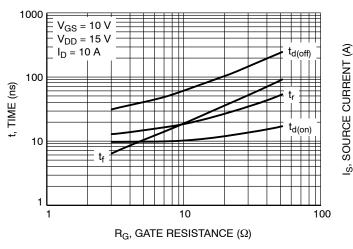


Figure 21. Resistive Switching Time Variation vs. Gate Resistance

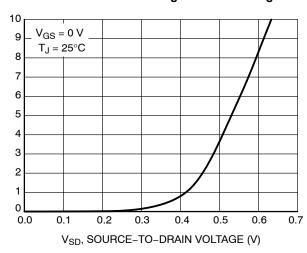


Figure 22. Diode Forward Voltage vs. Current

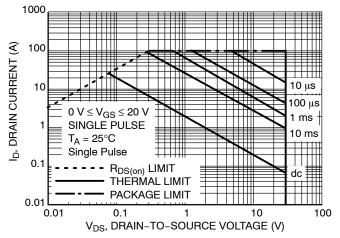


Figure 23. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS - Q2

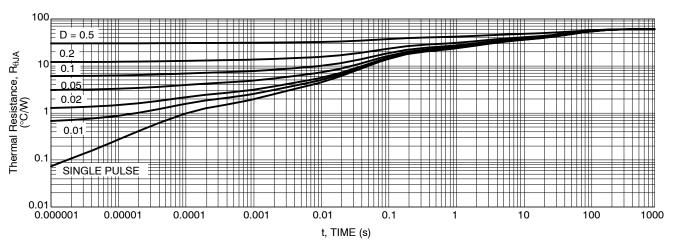
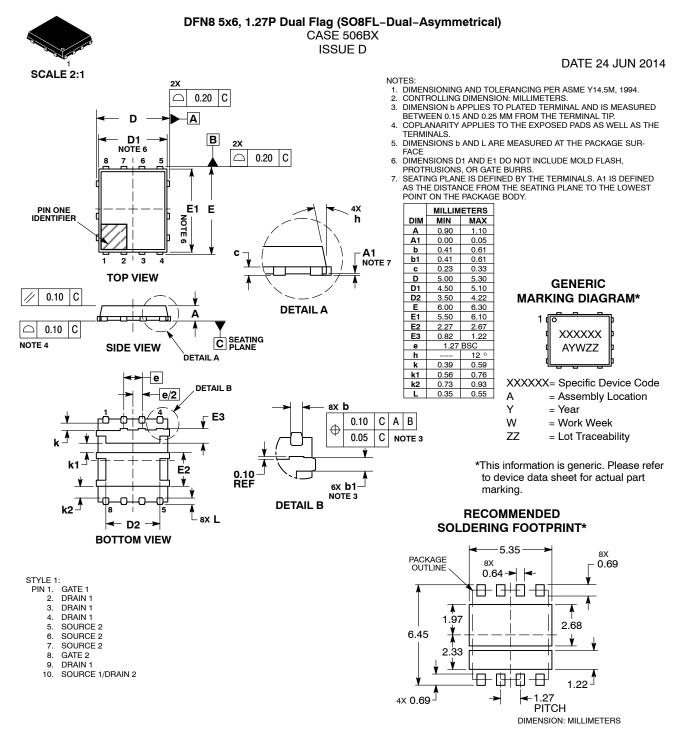



Figure 24. Thermal Response

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1 DOCUMENT NUMBER: 1 9840N54291E Directed visions are uncontrolled averaged (CONTROLLED CORN) in red		AG (SO8FL-DUAL-ASYMMETRICAL)	PAGE 1 OF 1	
	DOCUMENT NUMBER:	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B