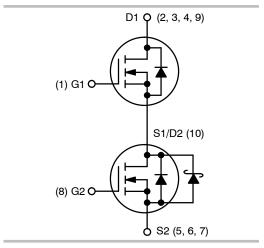
MOSFET – Power, Dual, N-Channel with Integrated Schottky, SO8FL

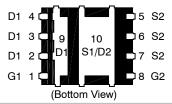
30 V, High Side 18 A / Low Side 23 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Low Side MOSFET with Integrated Schottky
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- DC-DC Converters
- System Voltage Rails
- Point of Load


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	6.5 mΩ @ 10 V	10 /
30 V	10 mΩ @ 4.5 V	18 A
Q2 Bottom	4.1 mΩ @ 10 V	23 A
FET 30 V	6.2 mΩ @ 4.5 V	23 A

PIN CONNECTIONS

MARKING DIAGRAM

DFN8 CASE 506BX

4902NF = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage	Q1	V _{GS}	±20	V		
Gate-to-Source Voltage			Q2			
Continuous Drain Current R _{θJA} (Note 1)		T _A = 25°C	Q1	I _D	13.5	
		T _A = 85°C			9.7	1 .
		T _A = 25°C	Q2		17.5	A
		T _A = 85°C			12.6	
Power Dissipation		T _A = 25°C	Q1	P _D	1.90	W
RθJA (Note 1)			Q2		1.99	
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	Q1	I _D	18.2	
		T _A = 85°C			13.1	1
	Steady	T _A = 25°C	Q2		23	A
	State	T _A = 85°C	1		16.6	1
Power Dissipation		T _A = 25°C	Q1	P _D	3.45	W
$R_{\theta JA} \le 10 \text{ s (Note 1)}$			Q2		3.45	
Continuous Drain Current		T _A = 25°C	Q1	I _D	10.3	
R _{θJA} (Note 2)		T _A = 85°C	1		7.4	1 .
		T _A = 25°C	Q2		13.3	A
		T _A = 85°C	1		9.6	
Power Dissipation		T _A = 25 °C	Q1	P_{D}	1.10	W
R _{θJA} (Note 2)			Q2		1.16	
Pulsed Drain Current		TA = 25°C	Q1	I _{DM}	60	Α
		tp = 10 μs	Q2		80	
Operating Junction and Storage Temperature				T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)				I _S	3.4	Α
	Q2		4.9	1		
Drain to Source dV/dt		dV/dt	6.0	V/ns		
Single Pulse Drain-to-Source Avalanche Energy (T		24 A	Q1	EAS	28.8	mJ
$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_L = XX A_{pk}, L = 0.1 \text{ mH}, R_0$	$_{\rm G}$ = 25 Ω)	27 A	Q2	EAS	36.5	1
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)						°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.

2. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	$R_{\theta JA}$	65.9	
	Q2		62.8	
Junction-to-Ambient - Steady State (Note 4)	Q1	$R_{\theta JA}$	113.2	0000
	Q2		108	°C/W
Junction-to-Ambient - (t ≤ 10 s) (Note 3)	Q1	$R_{\theta JA}$	36.2	1
	Q2		36.2	

- 3. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
- 4. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

FLECTRICAL CHARACTERISTICS (T.

Parameter	FET	Symbol	Test C	ondition	Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Break-	Q1	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	30			V
down Voltage	Q2		V _{GS} = 0 V,	I _D = 1.0 mA	30			
Drain-to-Source Break-	Q1	V _{(BR)DSS}				18		mV /
down Voltage Temperature Coefficient	Q2	`/Ť _J				15		°C
Zero Gate Voltage Drain	Q1	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
Current			$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			500	
Gate-to-Source Leakage	Q1	I _{GSS}	V _{GS} = 0 V,	VDS = ±20 V			±100	nA
Current	Q2						±100	
ON CHARACTERISTICS (Not	e 5)				•			
Gate Threshold Voltage	Q1	V _{GS(TH)}	V _{GS} = VDS	, I _D = 250 μA	1.2		2.2	V
	Q2]			1.2		2.2	
Negative Threshold Temperature Coefficient	Q1	V _{GS(TH)} /				4.5		mV / °C
ature Coefficient	Q2	T _J				4.0		
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		5.2	6.5	
ance			V_{GS} = 4.5 V	I _D = 10 A		8.0	10	mΩ
	Q2		V _{GS} = 10 V	I _D = 15 A		3.3	4.1	11175
			V _{GS} = 4.5 V	I _D = 15 A		5.0	6.2	
Forward Transconductance	Q1	9FS	$V_{DS} = 1.5 \text{ V}, I_D = 10 \text{ A}$			28		S
	Q2					35		
CHARGES, CAPACITANCES	& GATE	RESISTANCE	E					
Q1 Q						1150		
Input Capacitance	Q2 C _{ISS}				1590			
Output Canacitanas	Q1		V 0V4 4	4.101.17		360		
Output Capacitance	Q2	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, V}_{DS} = 15 \text{ V}$			813		pF	
Deverse Constitutes	Q1					105		
Reverse Capacitance	Q2	C _{RSS}				83		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

83

- 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

CHARGES, CAPACITANCES & GATE RESISTANCE Total Gate Charge Ω1 / Ω2	Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
Total Gate Charge Q2	CHARGES, CAPACITANCES	& GATE	RESISTANC	E		-	<u>-</u>	-	-
Threshold Gate Charge Q1 Q2 Q3 Q3 Q4 Q5 Q5 Q5 Q5 Q5 Q5 Q5	T. 10 . 0	Q1				9.7			
Threshold Gate Charge Q2 Q3 Q3 Q4 Q4 Q4 Q5 Q5 Q5 Q5 Q5	Total Gate Charge	Q2	$Q_{G(TOT)}$				11.5		
Cate	The state of the Color Observed	Q1	0				1.1		
Gate - to - Source Charge Q1 QG QG QG QG 3.3 A 4.2 A.2 A.2 A.2 A.2 A.3.7 A.3.7 A.3.7 A.3.7 A.3.7 A.3.7 A.3.7 A.3.4 A.2 A.3.7 A.3.7 A.3.4 A.2 A.3.7	Inresnoid Gate Charge	Q2	- Q _{G(TH)}	\/ 45\/\/	45.761 40.4		1.4		0
Gate-to-Drain Charge Q1 Q2 Q3 Q4	Oata ta Caura Chara	Q1	0	$V_{GS} = 4.5 \text{ V}, V_{DS}$	= 15 V; I _D = 10 A		3.3		nC
Gate-to-Drain Charge Q2	Gate-to-Source Charge	Q2	— Q _{GS}				4.2		
Total Gate Charge Q1	Cata ta Duain Chausa	Q1	0			3.7			
Total Gate Charge Q2	Gate-to-Drain Charge	Q2	u _{GD}				3.4		
SWITCHING CHARACTERISTICS (Note 6) 24.9	Tatal Cata Chausa	Q1	0	V 40VV	45 \		19.1		0
Turn-On Delay Time Q1	Total Gate Charge	Q2	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS}$	= 15 V; I _D = 10 A		24.9		nC
Turn-On Delay Time	SWITCHING CHARACTERIS	STICS (No	te 6)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn On Dolov Time		+				9.0		
Rise Time Q2	Q2 Q1	Q2	t _{d(ON)}				10.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Q1					15		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	Q2	t _r	V _{GS} = 4.5 V,	V _{DS} = 15 V,		15.2		
Fall Time Q2		Q1		$I_D = 10 \text{ A},$	$R_G = 3.0 \Omega$		14		
Fall Time Q2 t _f 4.7 4.7	Turn-Off Delay Time	Q2	^t d(OFF)				17.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E U.T.	Q1					4.0		
	Fall Time	Q2	t _f				4.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERIS	STICS (No	te 6)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn On Dalau Tina	Q1					6.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	Q2	^t d(ON)				7.0		
	Dia Tina	Q1					14		
	Hise Time	Q2	T _r	V _{GS} = 10 V,	V _{DS} = 15 V,		14		
	Turn-Off Delay Time	Q1		$I_D = 10 \text{ A}, R_G = 3.0 \Omega$			17		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Q2	^t d(OFF)				22		1
	E 11.7	Q1					3.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	Q2	t _f				3.3		
Forward Voltage V_{SD} V_{SD} $V_{GS} = 0 \text{ V},$ $V_{GS} = 0 \text{ V},$ $V_{J} = 125 \text{ °C}$ $V_{J} = 25 \text{ °C}$ $V_{J} = 2$	DRAIN-SOURCE DIODE CH	IARACTE	RISTICS			-	-	-	
Forward Voltage V_{SD} V_{SD} V_{SD} $V_{GS} = 0 \text{ V},$ $V_{J} = 125 ^{\circ}\text{C}$ 0.62 $V_{J} = 25 ^{\circ}\text{C}$ 0.37 0.70		6.		V _{GS} = 0 V.	T _J = 25°C		0.75	1.0	
$V_{GS} = 0 \text{ V}, \qquad I_J = 25 \text{ C} \qquad 0.37 \qquad 0.70$		Q1		I _S = 3 A	T _J = 125°C		0.62		
	Forward Voltage		V_{SD}	V _{GS} = 0 V ₂	T _J = 25°C		0.37	0.70	V
		Q2		I _S = 2 A	T _J = 125°C		0.31	1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS					
	Q1				23		
Reverse Recovery Time	Q2	t _{RR}			24.5		1
Charra Time	Q1	1-			12		l
Charge Time	Q2	ta	V 0V d /d 400 A / 5 L 0 A		13		ns
Disabassa Tisa	Q1	11-	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 3 \text{ A}$		11		1
Discharge Time	ischarge Time tb			11.5		1	
Daviera Daviera Charre	Q1	0			12		nC
Reverse Recovery Charge	Q2	Q_{RR}			24		
PACKAGE PARASITIC VALU	IES						
Cauraa Industanaa	Q1	1			0.38		الم
Source Inductance	Q2	L _S			0.65		nH
Duain Industria	Q1		T. 0500		0.054		-11
Drain Inductance Q2	Q2	L _D			0.007		nH
Gate Inductance Q1 Q2		$T_A = 25^{\circ}C$		1.5			
	Q2	L _G			1.5		nH
Cata Basistanas	Q1	Б			0.8		
Gate Resistance	Q2	R_{G}			0.8		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

- 6. Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFD4902NFT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4902NFT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS - Q1

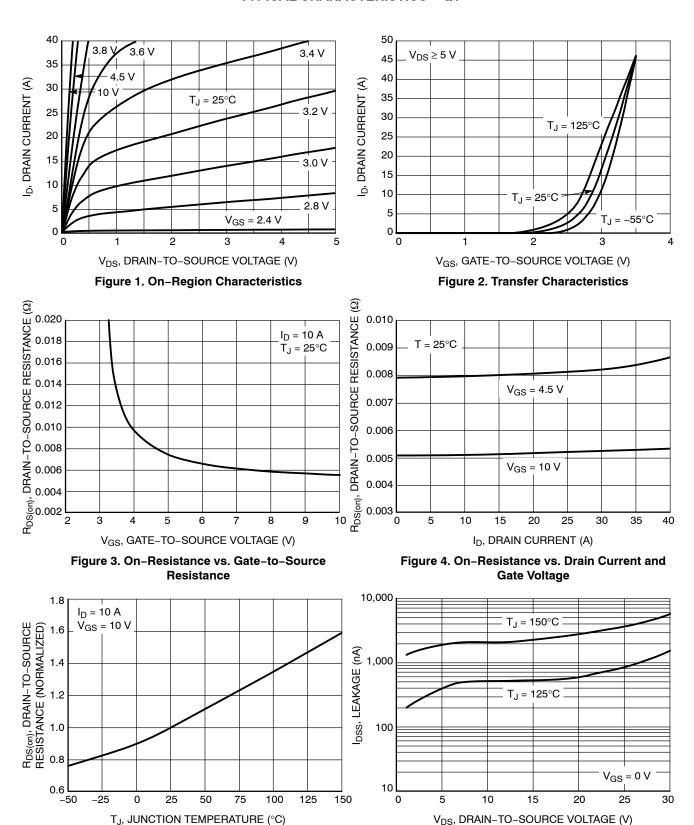


Figure 6. Drain-to-Source Leakage Current

vs. Voltage

Figure 5. On-Resistance Variation with

Temperature

TYPICAL CHARACTERISTICS - Q1

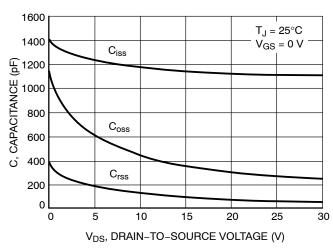


Figure 7. Capacitance Variation

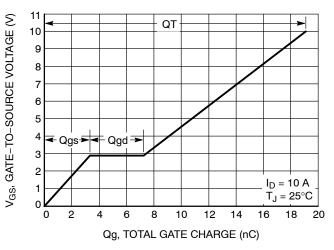


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

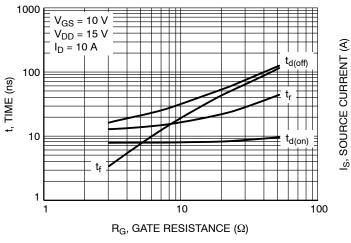


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

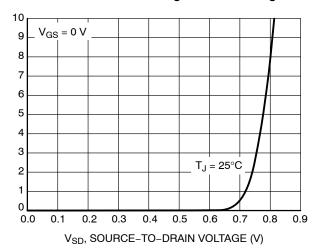
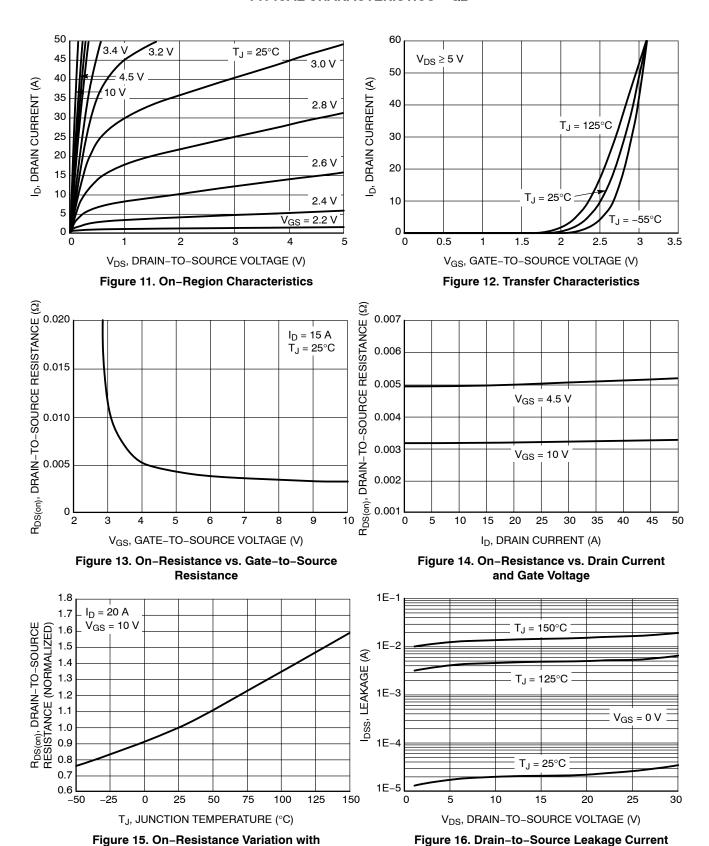



Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS - Q2

vs. Voltage

Temperature

TYPICAL CHARACTERISTICS - Q2

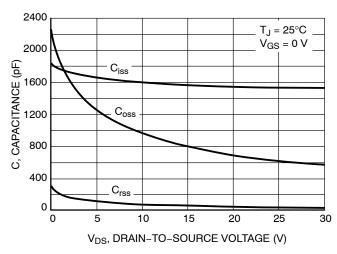


Figure 17. Capacitance Variation

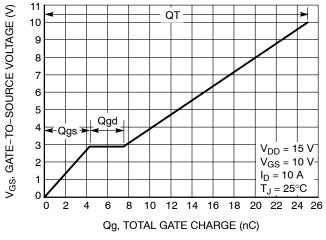


Figure 18. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

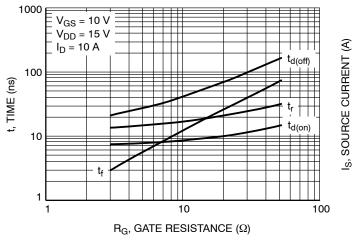


Figure 19. Resistive Switching Time Variation vs. Gate Resistance

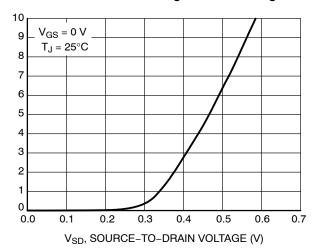
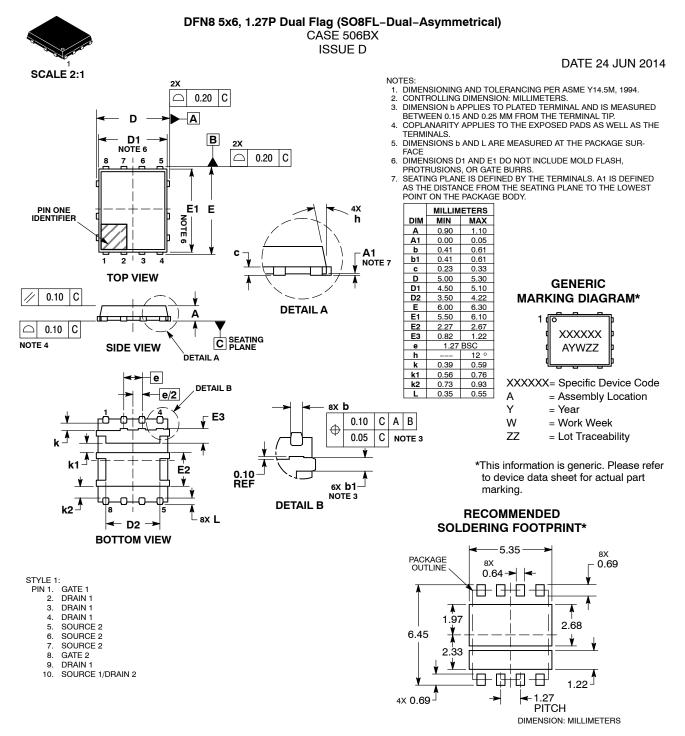



Figure 20. Diode Forward Voltage vs. Current

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1 DOCUMENT NUMBER: 1 9840N54291E Directed visions are uncontrolled averaged (CONTROLLED CORN) in red		DFN8 5X6, 1.27P DUAL FLAG (SO8FL-DUAL-ASYMMETRICAL) PAGE 1 OF			
Electronic versions are uncontrolled except when accessed directly from the Document Repository.	DOCUMENT NUMBER:		Printed versions are uncontrolled except when stamped "CONTRÓLLED	COPY" in red.	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B