

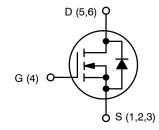
# MOSFET - Power, Single N-Channel 100 V, 2.8 mΩ, 175 A NTMFS002N10MCL

#### **Features**

- Small Footprint (5x6 mm) for Compact Design
- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Q<sub>G</sub> and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free, Beryllium Free and are RoHS Compliant

#### **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

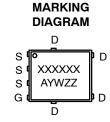
| Parameter                                                                          |                                     | Symbol                            | Value           | Unit |    |
|------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|-----------------|------|----|
| Drain-to-Source Voltage                                                            |                                     |                                   | $V_{DSS}$       | 100  | V  |
| Gate-to-Source Voltage                                                             | Э                                   |                                   | $V_{GS}$        | ±20  | V  |
| Continuous Drain<br>Current R <sub>θJC</sub> (Note 1)                              | Steady<br>State                     | T <sub>C</sub> = 25°C             | I <sub>D</sub>  | 175  | Α  |
|                                                                                    |                                     | T <sub>C</sub> = 100°C            |                 | 123  |    |
| Power Dissipation R <sub>0</sub> JC (Note 1)                                       |                                     | T <sub>C</sub> = 25°C             | $P_{D}$         | 189  | W  |
|                                                                                    |                                     | T <sub>C</sub> = 100°C            |                 | 94   | 94 |
| Continuous Drain                                                                   |                                     | T <sub>A</sub> = 25°C             | I <sub>D</sub>  | 22   | Α  |
| Current R <sub>θJA</sub><br>(Notes 1, 2)                                           | Steady<br>State                     | T <sub>A</sub> = 100°C            |                 | 15   |    |
| Power Dissipation R <sub>0</sub> JA (Notes 1, 2)                                   |                                     | T <sub>A</sub> = 25°C             | $P_{D}$         | 3    | W  |
|                                                                                    |                                     | T <sub>A</sub> = 100°C            |                 | 1.5  |    |
| Pulsed Drain Current                                                               | $T_A = 25^{\circ}C, t_p = 10 \mu s$ |                                   | I <sub>DM</sub> | 1536 | Α  |
| Operating Junction and Storage Temperature Range                                   |                                     | T <sub>J</sub> , T <sub>stg</sub> | -55 to<br>+175  | °C   |    |
| Source Current (Body Diode)                                                        |                                     |                                   | I <sub>S</sub>  | 145  | Α  |
| Single Pulse Drain-to-Source Avalanche<br>Energy (I <sub>L(pk)</sub> = 40 A)       |                                     | E <sub>AS</sub>                   | 328             | mJ   |    |
| Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s) |                                     | TL                                | 260             | °C   |    |


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### THERMAL RESISTANCE RATINGS

| Parameter                                   | Symbol          | Value | Unit |
|---------------------------------------------|-----------------|-------|------|
| Junction-to-Case - Steady State (Note 1)    | $R_{\theta JC}$ | 0.79  | °C/W |
| Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$ | 50    |      |

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 100 V                | 2.8 mΩ @ 10 V           | 175 A              |
|                      | 3.8 mΩ @ 4.5 V          | 173 A              |



**N-CHANNEL MOSFET** 



#### DFN5 (SO-8FL) CASE 506EZ



A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

#### **ORDERING INFORMATION**

| Device            | Package           | Shipping†             |  |  |
|-------------------|-------------------|-----------------------|--|--|
| NTMFS002N10MCLT1G | DFN5<br>(Pb-Free) | 1500 /<br>Tape & Reel |  |  |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

<sup>2.</sup> Surface-mounted on FR4 board using 1 in<sup>2</sup> pad size, 2 oz. Cu pad.

### **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise specified)

| Parameter                                                    | Symbol                              | Test Condition                                                                         |                        | Min | Тур  | Max | Unit  |
|--------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------|------------------------|-----|------|-----|-------|
| OFF CHARACTERISTICS                                          |                                     |                                                                                        | _                      |     |      |     |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                | $V_{GS} = 0 \text{ V}, I_D =$                                                          | = 250 μA               | 100 |      |     | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /              | I <sub>D</sub> = 250 μA, ref to 25°C                                                   |                        |     | 70   |     | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                    | V <sub>GS</sub> = 0 V,<br>V <sub>DS</sub> = 100 V                                      | T <sub>J</sub> = 25°C  |     |      | 1   | μΑ    |
|                                                              |                                     |                                                                                        | T <sub>J</sub> = 125°C |     |      | 100 |       |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                    | $V_{DS} = 0 \text{ V}, V_{G}$                                                          | <sub>S</sub> = 20 V    |     |      | 100 | nA    |
| ON CHARACTERISTICS                                           |                                     |                                                                                        |                        |     |      |     | -     |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                 | $V_{GS} = V_{DS}, I_D$                                                                 | = 351 μΑ               | 1   |      | 3   | V     |
| Threshold Temperature Coefficient                            | V <sub>GS(TH)</sub> /T <sub>J</sub> | I <sub>D</sub> = 250 μA, ref to 25°C                                                   |                        |     | 5.7  |     | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                 | V <sub>GS</sub> = 10 V, I <sub>E</sub>                                                 | <sub>O</sub> = 50 A    |     | 2.3  | 2.8 | mΩ    |
|                                                              |                                     | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 50 A                                         |                        |     | 3.0  | 3.8 | 1     |
| Forward Transconductance                                     | 9FS                                 | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 50 A                                          |                        |     | 200  |     | S     |
| Gate-Resistance                                              | $R_{G}$                             | T <sub>A</sub> = 25°C                                                                  |                        |     | 0.40 |     | Ω     |
| CHARGES & CAPACITANCES                                       | •                                   |                                                                                        |                        |     |      |     |       |
| Input Capacitance                                            | C <sub>ISS</sub>                    | V <sub>GS</sub> = 0 V, f = 1 MHz, V <sub>DS</sub> = 50 V                               |                        |     | 7200 |     | pF    |
| Output Capacitance                                           | C <sub>OSS</sub>                    |                                                                                        |                        |     | 2400 |     |       |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                    |                                                                                        |                        |     | 36   |     |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                 | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 50 V, I <sub>D</sub> = 50 A                 |                        |     | 45   |     | nC    |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                 | V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 50 V, I <sub>D</sub> = 50 A                  |                        |     | 97   |     |       |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                  |                                                                                        |                        |     | 11   |     |       |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                     |                                                                                        |                        |     | 20   |     |       |
| Gate-to-Drain Charge                                         | Q <sub>GD</sub>                     |                                                                                        |                        |     | 10   |     |       |
| Plateau Voltage                                              | V <sub>GP</sub>                     |                                                                                        |                        |     | 3    |     | V     |
| SWITCHING CHARACTERISTICS (Not                               | e 3)                                |                                                                                        |                        |     | •    |     |       |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                  | $V_{GS}$ = 10 V, $V_{DS}$ = 50 V, $I_{D}$ = 50 A, $R_{G}$ = 6 $\Omega$                 |                        |     | 24   |     | ns    |
| Rise Time                                                    | t <sub>r</sub>                      |                                                                                        |                        |     | 30   |     |       |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                 |                                                                                        |                        |     | 250  |     |       |
| Fall Time                                                    | t <sub>f</sub>                      |                                                                                        |                        |     | 105  |     |       |
| DRAIN-SOURCE DIODE CHARACTER                                 |                                     |                                                                                        |                        | 1   |      | 1   | 1     |
| Forward Diode Voltage                                        | V <sub>SD</sub>                     | V <sub>GS</sub> = 0 V,<br>I <sub>S</sub> = 50 A                                        | T <sub>J</sub> = 25°C  |     | 0.83 | 1.3 | V     |
| Ç                                                            |                                     |                                                                                        | T <sub>J</sub> = 125°C |     | 0.71 |     | 1     |
| Reverse Recovery Time                                        | t <sub>RR</sub>                     | $V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A}/\mu\text{s,}$ $I_{S} = 31 \text{ A}$ |                        |     | 73   |     | ns    |
| Reverse Recovery Charge                                      | Q <sub>RR</sub>                     |                                                                                        |                        |     | 93   |     | nC    |
| Charge Time                                                  | t <sub>a</sub>                      |                                                                                        |                        |     | 35   |     | ns    |
| Discharge Time                                               | t <sub>b</sub>                      |                                                                                        |                        |     | 38   |     | ns    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures

#### **TYPICAL CHARACTERISTICS**

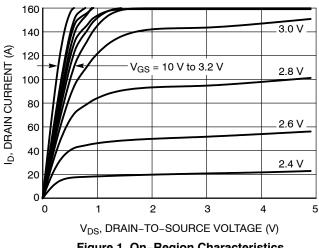



Figure 1. On-Region Characteristics

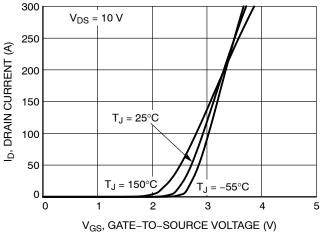



Figure 2. Transfer Characteristics

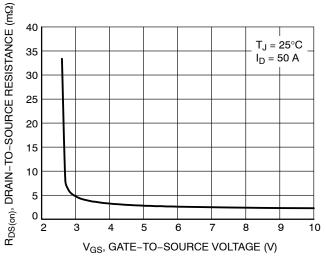



Figure 3. On-Resistance vs. Gate-to-Source Voltage

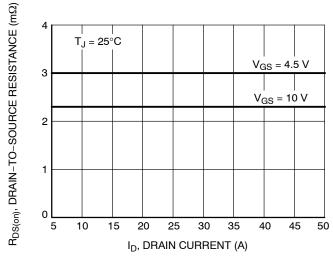



Figure 4. On-Resistance vs. Drain Current and **Gate Voltage** 

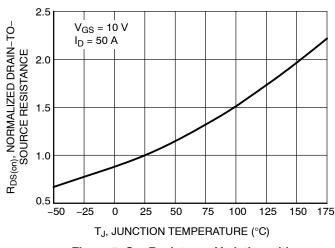



Figure 5. On-Resistance Variation with **Temperature** 

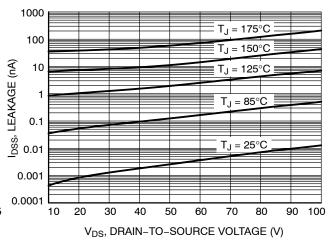



Figure 6. Drain-to-Source Leakage Current vs. Voltage

#### **TYPICAL CHARACTERISTICS**

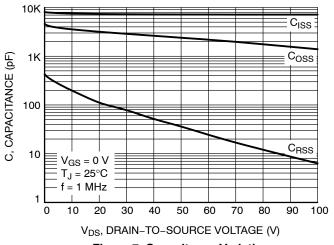



Figure 7. Capacitance Variation

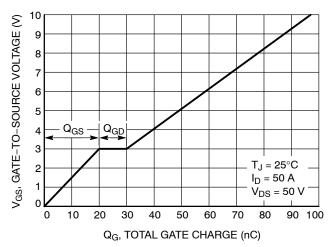



Figure 8. Gate-to-Source Voltage vs. Total Charge

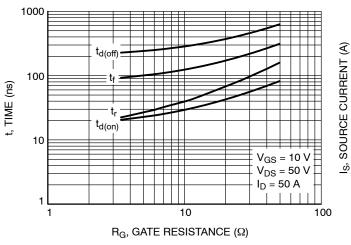



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

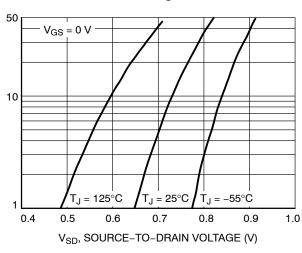



Figure 10. Diode Forward Voltage vs. Current

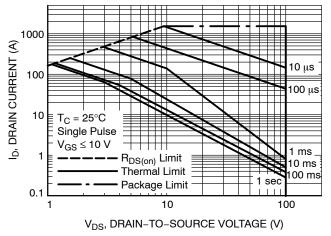



Figure 11. Maximum Rated Forward Biased Safe Operating Area

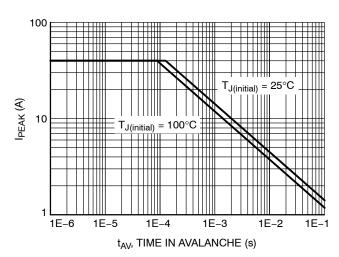



Figure 12. Maximum Drain Current vs. Time in Avalanche

#### **TYPICAL CHARACTERISTICS**

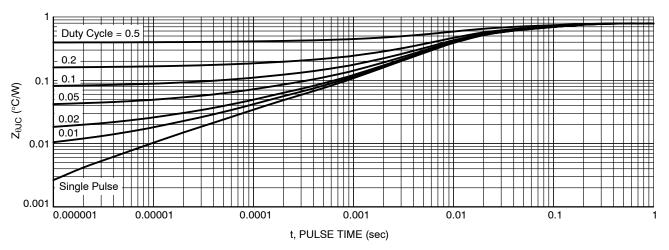
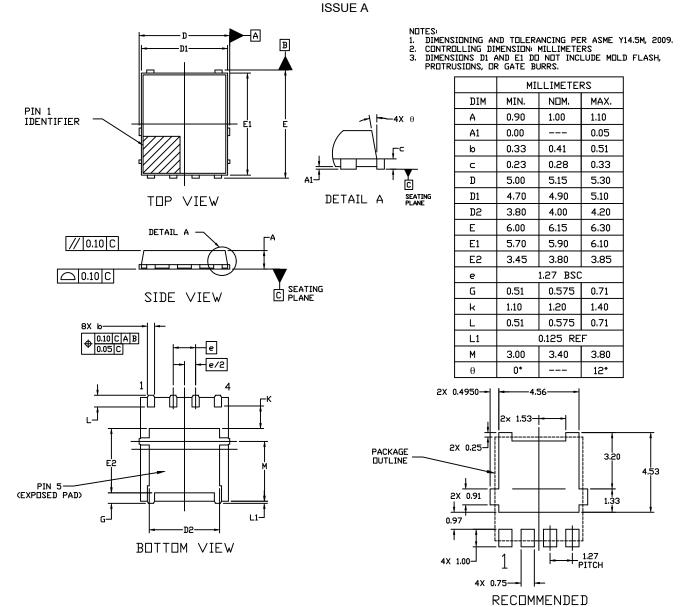




Figure 13. Transient Thermal Impedance

#### PACKAGE DIMENSIONS

# **DFN5 5x6, 1.27P (SO-8FL)**CASE 506EZ



For additional information on our Pb-Free strategy and soldering details, please download the IDN Semiconductor Soldering and Mounting Techniques Reference Manual, SILL DERRM/D.

MOUNTING FOOTPRINT

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

IRFD120 JANTX2N5237 BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY IPS70R2K0CEAKMA1 SQD23N06-31L-GE3
TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7
STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B
IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y-TP MCQ7328-TP NTMC083NP10M5L BXP7N65D BXP4N65F AOL1454G
WMJ80N60C4 BXP2N20L BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13
SLF10N65ABV2 BSO203SP BSO211P IPA60R230P6