MOSFET - Power, Single N-Channel, PQFN8 5x6 150 V, 11.5 mΩ, 78 A

NTMFS011N15MC

Features

- Small Footprint (5 x 6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

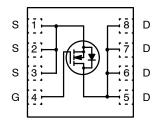
- Synchronous Rectification
- AC-DC and DC-DC Power Supplies
- AC-DC Adapters (USB PD) SR
- Load Switch

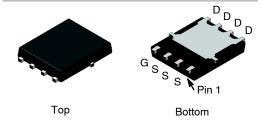
MAXIMUM RATINGS ($T_J = 25^{\circ}C$, Unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Breakdown Voltage			V _{(BR)DSS}	150	V
Gate-to-Source Volta	ige		V _{GS}	±20	V
Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steady State T _C = 25°C		I _D	78	Α
Power Dissipation R _{θJC} (Note 2)			P_{D}	147	W
Continuous Drain Current $R_{\theta JA}$ (Note 1, 2)	Steady T _A = 25°C State		Ι _D	10.7	Α
Power Dissipation $R_{\theta JA}$ (Note 1, 2)			P_{D}	2.7	W
Pulsed Drain Cur- rent	T _A = 25°C, t _p = 250 μs		I _{DM}	259	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to +150	°C
Source Current (Body Diode)			I _S	133	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = 39 A, L = 0.1 mH)			E _{AS}	76.1	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			T _L	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

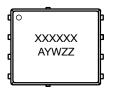
- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS} R _{DS(ON)} MAX		I _D MAX
150 V	11.5 mΩ @ 10 V	35 A
	13.2 mΩ @ 8 V	18 A


N-Channel MOSFET

PQFN8 5x6 (Power 56) CASE 483AE

MARKING DIAGRAM

A = Assembly Location

Y = Year

W = Work Week

ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 5)	0.85	°C/W
$R_{ hetaJA}$	Junction-to-Ambient - Steady State (Note 5)	46	

ORDERING INFORMATION

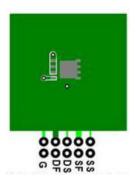
Device	Device Marking	Package	Shipping (Qty / Packing) [†]
NTMFS011N15MC	NTMFS011N15MC	PQFN8 5x6 (Power 56) (Pb–Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

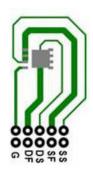
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	าร	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS						
V _{(BR)DSS}	Drain – to – Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 25$	60 μΑ	150			V
V _{(BR)DSS} / T _J	Drain – to – Source Breakdown Voltage Temperature Coefficient	I _D = 250 μA, ref to 25°C			85		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	T _J = 25°C				1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 120 \text{ V}$	T _J = 125°C			100	
I _{GSS}	Gate – to – Source Leakage Current	V _{DS} = 0 V, V _{GS} = 1	±20 V			±100	nA
ON CHARACT	ERISTICS (Note 3)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 19$	94 μΑ	2.5	3.35	4.5	V
V _{GS(TH)} / I _J	Negative Threshold Temperature Coefficient	I _D = 250 μA, ref to	25°C		-7.2		mV/°C
R _{DS(on)}	Drain – to – Source On Resistance	V _{GS} = 10 V, I _D = 3	35 A		9.0	11.5	mΩ
		V _{GS} = 8 V, I _D = 18 A			9.7	13.2	
g _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 18 A			96	116	S
R _G	Gate-Resistance	T _A = 25°C			0.9	1.1	Ω
CHARGES & C	CAPACITANCES						
CISS	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75 V			2478	3592	pF
Coss	Output Capacitance				728	1092	
CRSS	Reverse Transfer Capacitance				7.9	15	
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 8 V, V _{DS} = 75 V,	I _D = 35 A		30.6	46	nC
Q _{G(TOT)}	Total Gate Charge				30.7	46	
^Q GS	Gate-to-Source Charge				12.8		1
Q _{SW}	Switching Charge	$V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V}$	', I _D = 35 A		9.4		
Q _{GD}	Gate-to-Drain Charge	V _{GS} = 0 V, V _{DD} = 75 V			4.5		
Qoss	Output Charge				95		
V _{GP}	Plateau Voltage	V _{GS} = 10 V, V _{DS} = 75 V, I _D = 35 A			5.1		V
SWITCHING C	HARACTERISTICS (Note 3)				•	•	•
t _{d(ON)}	Turn – On Delay Time				19.8		ns
t _r	Rise Time	V_{GS} = 10 V, V_{DS} = 75 V, I_{D} = 35 A, R_{G} = 6 Ω			4.7		1
t _{d(OFF)}	Turn – Off Delay Time				25.5		1
t _f	Fall Time				4.0		1

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

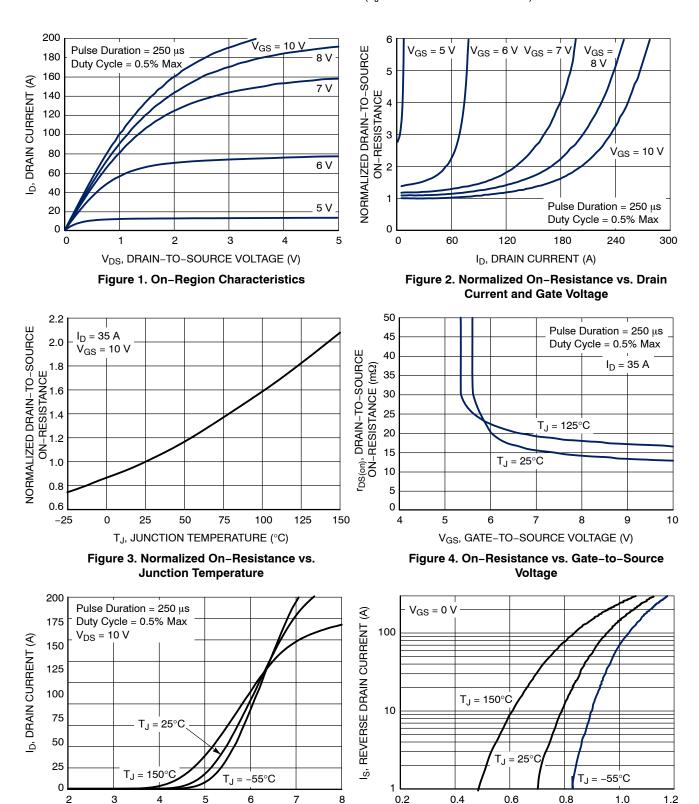

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
DRAIN-SOUR	DRAIN-SOURCE DIODE CHARACTERISTICS						
V _{SD}	Forward Diode Voltage	V 0VI 25 A	T _J = 25°C		0.869		V
		$V_{GS} = 0 \text{ V}, I_{S} = 35 \text{ A}$	T _J = 125°C		0.725		
t _{RR}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 300 \text{ A}/\mu\text{s,} \\ I_{S} = 35 \text{ A}$			48.8		ns
Q _{RR}	Reverse Recovery Charge				227		nC
t _{RR}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 1000 \text{ A/}\mu\text{s,}$ $I_{S} = 35 \text{ A}$			36.4		ns
Q _{RR}	Reverse Recovery Charge			·	407		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


3. Switching characteristics are independent of operating junction temperatures.

NOTES:

4. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.


a) 46°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 116°C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 196 mJ is based on starting T_J = 25°C; L = 3 mH, I_{AS} = 12.7 A, V_{DD} = 100 V, V_{GS} = 15 V. 100% tested at L = 0.1 mH, I_{AS} = 41 A.
 Pulsed I_D please refer to Fig 11 SOA graph for more details.
 Compute Continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted.)

V_{SD}, BODY DIODE FORWARD VOLTAGE (V)

Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 5. Transfer Characteristics

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted.)

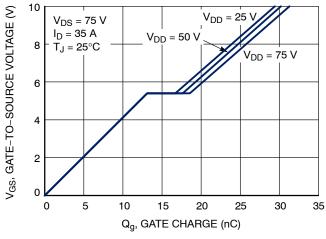


Figure 7. Gate Charge Characteristics

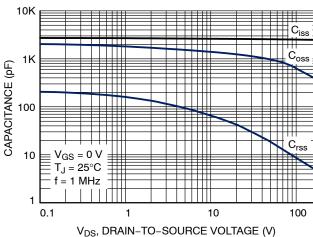


Figure 8. Capacitance vs. Drain-to-Source

Voltage

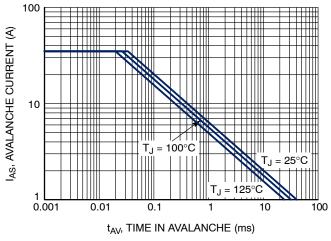


Figure 9. Unclamped Inductive Switching Capability

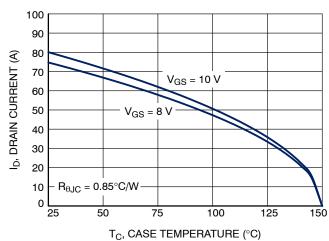


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

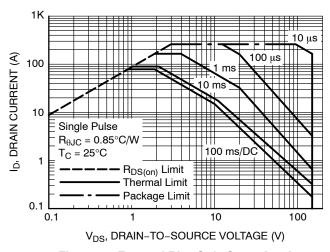


Figure 11. Forward Bias Safe Operating Area

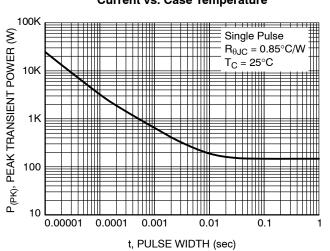


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted.)

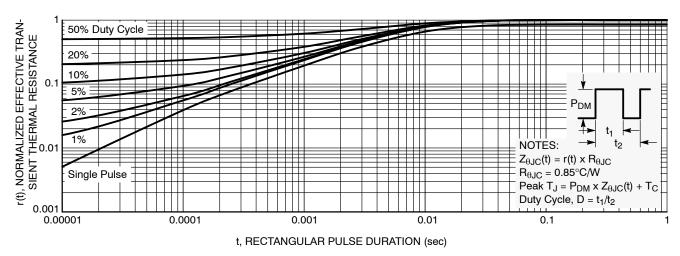
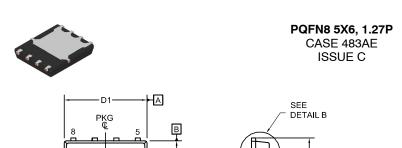
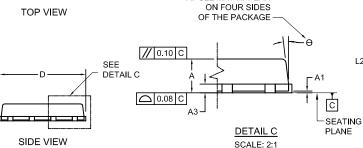


Figure 13. Junction-to-Case Transient Thermal Response Curve


PKG &

PIN 1

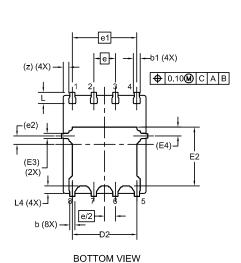
AREA

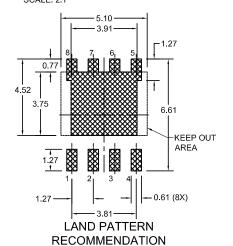


DATE 21 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.




OPTIONAL DRAFT

ANGLE MAY APPEAR

ل 22 **DETAIL B**

SCALE: 2:1

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DIM	MILLIMETERS			
J	MIN.	NOM.	MAX.	
Α	0.90	1.00	1.10	
A1	0.00	-	0.05	
b	0.21	0.31	0.41	
b1	0.31	0.41	0.51	
А3	0.15	0.25	0.35	
D	4.90	5.00	5.20	
D1	4.80	4.90	5.00	
D2	3.61	3.82	3.96	
Е	5.90	6.15	6.25	
E1	5.70	5.80	5.90	
E2	3.38	3.48	3.78	
E3	(0.30 REF		
E4	(0.52 REF		
е	,	1.27 BSC	;	
e/2	(0.635 BS	С	
e1	,	3.81 BSC	;	
e2	(0.50 REF		
L	0.51	0.66	0.76	
L2	0.05	0.18	0.30	
L4	0.34	0.44	0.54	
Z	0.34 REF			
Θ	0°	-	12°	

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B