ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

MOSFET – Power, Single, N-Channel, SO-8FL 30 V, 191 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These are Pb-Free Devices

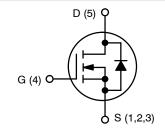
Applications

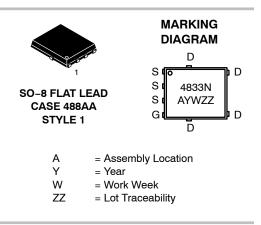
- Refer to Application Note AND8195/D
- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Para	meter		Symbol	Value	Unit
Drain-to-Source Volt	age		V _{DSS}	30	V
Gate-to-Source Volta	age		V _{GS}	±20	V
Continuous Drain Current R _{θJA}		$T_A = 25^{\circ}C$	Ι _D	28	А
(Note 1)		T _A = 85°C		20.5	
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$ P_D	2.7	W	
Continuous Drain		$T_A = 25^{\circ}C$	ID	16	А
Current R _{θJA} (Note 2)	Steady	T _A = 85°C		30 ±20 28 20.5 2.7	
Power Dissipation $R_{\theta JA}$ (Note 2)	State	T _A = 25°C	PD		W
Continuous Drain		$T_{C} = 25^{\circ}C$	I _D	191	А
Current R _{θJC} (Note 1)		$T_{C} = 85^{\circ}C$		138	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	113.6	W
Pulsed Drain Current		= 25°C, = 10 μs	I _{DM}	288	А
Operating Junction an Temperature	nd Storage	•	T _J , T _{STG}		°C
Source Current (Body	/ Diode)		۱ _S	104	А
Drain to Source dV/d	t		dV/dt	6	V/ns
Single Pulse Drain-to Energy ($T_J = 25^{\circ}C$, V $I_L = 35 A_{pk}$, L = 1.0 m	Steady State State T _A t_p and Storage dy Diode) dt to-Source A $V_{DD} = 30 V$, nH, R _G = 23 or Soldering	V _{GS} = 10 V,	EAS	612.5	mJ
Lead Temperature for (1/8" from case for 10		Purposes	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	2.0 m Ω @ 10 V	101.4
30 V	3.0 mΩ @ 4.5 V	191 A

N-CHANNEL MOSFET

ORDERING INFORMATION

	Device	Package	Shipping [†]
	NTMFS4833NT1G	SO-8FL (Pb-Free)	1500/Tape & Reel
	NTMFS4833NT3G	SO-8FL (Pb-Free)	5000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please

refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

2. Surface–mounted on FR4 board using the minimum recommended pad size. (Cu area = 50 mm² [1 oz])

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ ext{ heta}JC}$	1.1	
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	45.6	°C/W
Junction-to-Ambient - t < 10s (Note 3)	$R_{ hetaJA}$	17.1	-C/VV
Junction-to-Ambient - Steady State (Note 4)	$R_{ hetaJA}$	117.4	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size. (Cu area = 50 mm² [1 oz])

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D$	= 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				17		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	T _J = 25 °C			1	
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)					-	-	
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 250 μA	1.5		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.12		mV/°C
Drain-to-Source On Resistance		11.5 V	I _D = 30 A		1.3	2.0	
			I _D = 15 A		1.3]
		V _{GS} = 4.5 V	I _D = 30 A		2.3	3.0	mΩ
			I _D = 15 A		2.3		
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I	_D = 15 A		30		S
CHARGES, CAPACITANCES & GATE RESIS	STANCE				-	-	
Input Capacitance	C _{ISS}				5600		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	lz, V _{DS} = 12 V		1200		pF
Reverse Transfer Capacitance	C _{RSS}				650		1
Total Gate Charge	Q _{G(TOT)}				39	58	
Threshold Gate Charge	Q _{G(TH)}				6.0		
Gate_to_Source Charge	000	V_{GS} = 4.5 V, V_{DS} =	15 V; I _D = 30 A		16		nC

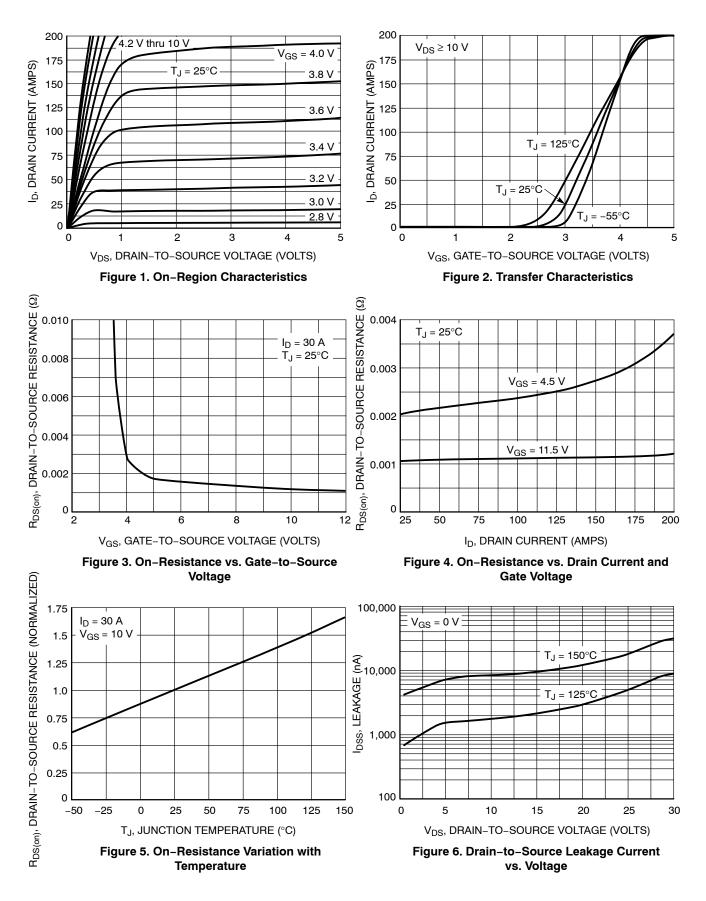
6	·G(11)	V_{GS} = 4.5 V, V_{DS} = 15 V; I_{D} = 30 A		
Gate-to-Source Charge	Q _{GS}	$v_{GS} = 4.5 v, v_{DS} = 15 v, I_D = 50 R$	16	
Gate-to-Drain Charge	Q _{GD}		17	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 11.5 V, V_{DS} = 15 V; I_{D} = 30 A	88	

SWITCHING CHARACTERISTICS (Note 6)

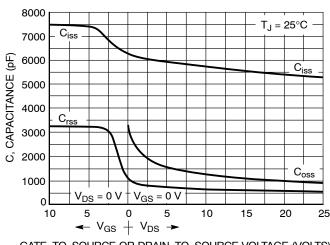
Turn-On Delay Time	t _{d(ON)}		25	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 15 A,	34	
Turn-Off Delay Time	t _{d(OFF)}	R _G = 3.0 Ω	35	ns
Fall Time	t _f		17	
Turn-On Delay Time	t _{d(ON)}		14	
Rise Time	t _r	V _{GS} = 11.5 V, V _{DS} = 15 V,	19	
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 11.5 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω	50	ns
Fall Time	t _f		10	

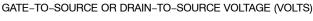
nC

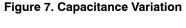
5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

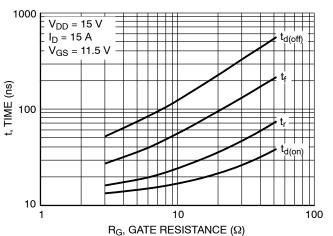

6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condi	tion	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTE	ERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 30 A T_{J} = 25^{\circ}C T_{J} = 125^{\circ}C$	-	0.8	1.0	V	
			T _J = 125°C	-	0.68	-	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 30 A		-	38	-	ns
Charge Time	t _a			-	19	-	
Discharge Time	t _b			-	19	-	
Reverse Recovery Charge	Q _{RR}			-	36	-	nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S			-	0.50	-	nH
Drain Inductance	L _D	T _A = 25°C		-	0.005	-	nH
Gate Inductance	L _G			-	1.84	-	nH
Gate Resistance	R _G			-	1.0	-	Ω


Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES




TYPICAL PERFORMANCE CURVES

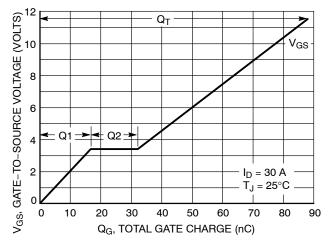


Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

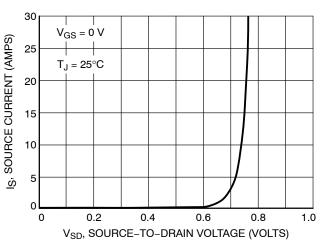
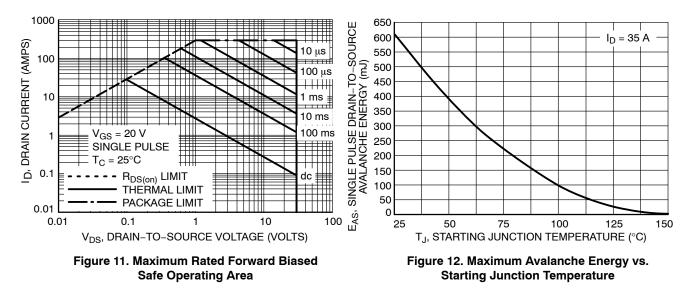



Figure 10. Diode Forward Voltage vs. Current

TYPICAL PERFORMANCE CURVES

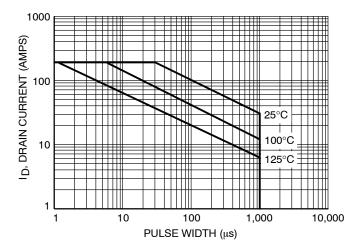


Figure 13. Avalanche Characteristics

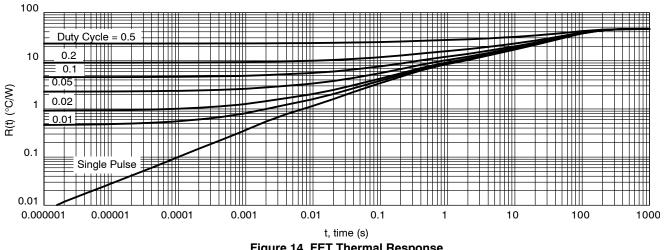
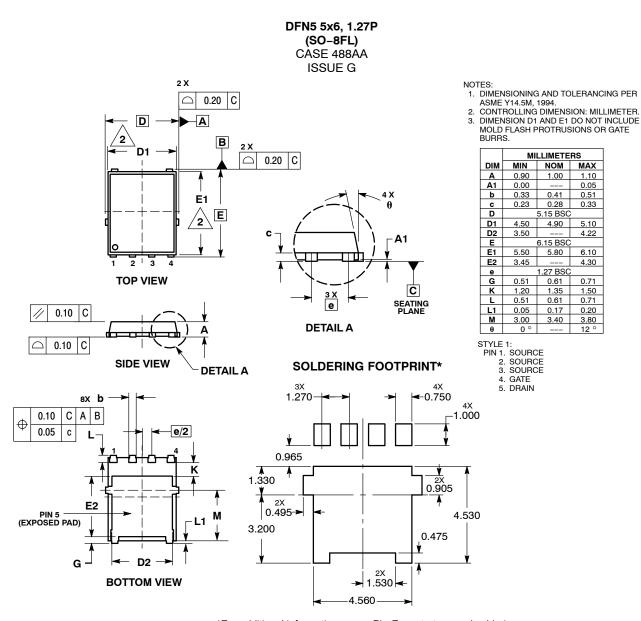



Figure 14. FET Thermal Response

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7