

MOSFET - Power, Single N-Channel, DUAL COOL®, DFN8 5x6.15

100 V, 4.3 mΩ, 116 A NTMFSC4D2N10MC

Features

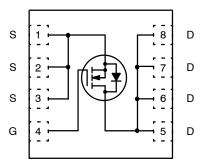
- Advanced Dual-Sided Cooled Packaging
- Ultra Low R_{DS(on)} to Minimize Conduction Losses
- MSL1 Robust Packaging Design
- 175°C T_J Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

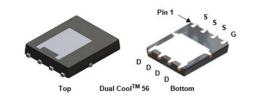
Typical Applications

- Orring FET/Load Switching
- Synchronous Rectifier
- DC-DC Conversion

MAXIMUM RATINGS ($T_J = 25^{\circ}C$, Unless otherwise specified)

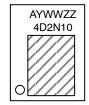
Parameter			Symbol	Value	Unit
Drain-to-Source Breakdown Voltage			V _{(BR)DSS}	100	٧
Gate-to-Source Volta	Gate-to-Source Voltage			±20	V
Continuous Drain Current R ₀ JC (Note 2)	Steady State T _C = 25°C		Ι _D	116	Α
Power Dissipation R _{θJC} (Note 2)			P _D	122	W
Continuous Drain Current R _{0JA} (Notes 1, 2)	Steady State T _A = 25°C		I _D	29.6	Α
Power Dissipation R _{θJA} (Notes 1, 2)	Siale		P _D	7.9	W
Pulsed Drain Current	$T_A = 25^{\circ}C$	C, t _p = 10 μs	I _{DM}	900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			I _S	101	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = 49 A, L = 0.1 mH)			E _{AS}	120	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			T _L	300	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

1

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 \/	4.3 m Ω @ 10 V	116 A
100 V	12 m Ω @ 6 V	IIOA


N-Channel MOSFET

DFN8 5x6.15 CASE 506EG

MARKING DIAGRAM

4D2N10 = Specific Device Code

A = Assembly Location

Y = Year

WW = Work Week

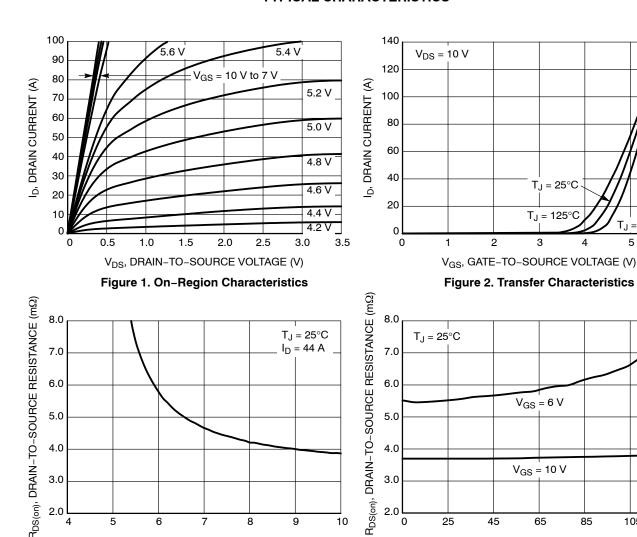
ZZ = Assembly Lot Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$R_{ hetaJC}$	Junction-to-Case - Steady State (Note 1)	1.23	°C/W
$R_{ hetaJC}$	Junction-to-Top Source - Steady State (Note 1)	1.5	
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 1)	19	


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	ons	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-			-	-	<u> </u>
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref t	o 25°C		8.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 100 V	T _J = 25°C			1	μΑ
		$V_{GS} = 0 V, V_{DS} = 100 V$	T _J = 125°C			100	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 3$	250 μΑ	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I _D = 250 μA, ref t	o 25°C		-9.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	= 44 A		3.7	4.3	mΩ
		V _{GS} = 6 V, I _D = 22 A			6.0	12	
Gate-Resistance	R_{G}	T _A = 25°C			1.2		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			2856		pF
Output Capacitance	Coss				1670		
Reverse Transfer Capacitance	C _{RSS}				29		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 6 V, V _{DS} = 50 V, I _D = 44 A			27		nC
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 50 V, I _D = 44 A			42		
Gate-to-Source Charge	Q _{GS}				12		1
Gate-to-Drain Charge	Q _{GD}				12		
Plateau Voltage	V _{GP}				4.9		V
SWITCHING CHARACTERISTICS (Not							
Turn-On Delay Time	td(ON)				12		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} :	= 50 V.		18		
Turn-Off Delay Time	td(OFF)	$I_D = 44 \text{ A}, R_G = 2.5 \Omega$			30		
Fall Time	t _f				5.2		
DRAIN-SOURCE DIODE CHARACTER	RISTICS	-			-	-	-
Forward Diode Voltage	V _{SD}		T _J = 25°C		0.85		V
		Voc - 0 V Io - 44 A	T _J = 125°C		0.73		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,} \\ I_{S} = 44 \text{ A}$			65.5		ns
Reverse Recovery Charge	Q _{RR}				100		nC
	•	•			•	•	•

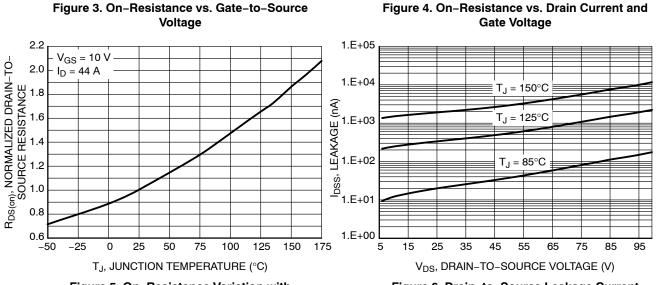
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

V_{GS}, GATE VOLTAGE (V) Figure 3. On-Resistance vs. Gate-to-Source

7


6

8

9

3.0

5

3.0

2.0

25

45

Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

 $V_{GS} = 10 \text{ V}$

65

ID, DRAIN CURRENT (A)

85

105

125

-55°C

6

TYPICAL CHARACTERISTICS

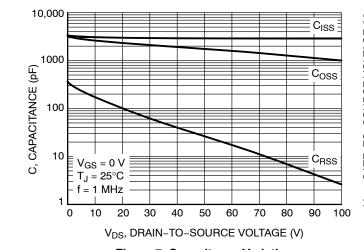


Figure 7. Capacitance Variation

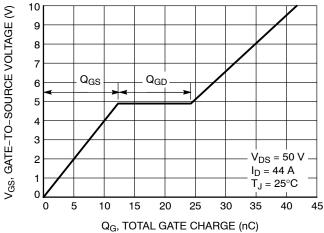


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

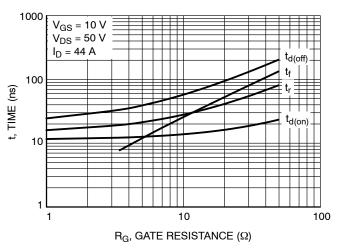


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

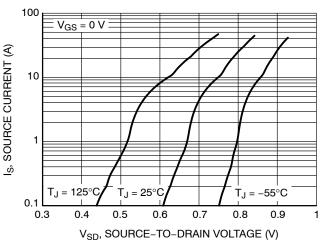


Figure 10. Diode Forward Voltage vs. Current

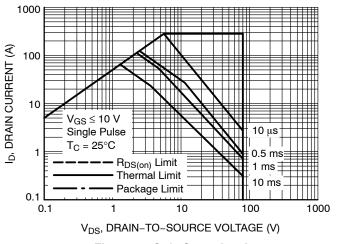


Figure 11. Safe Operating Area

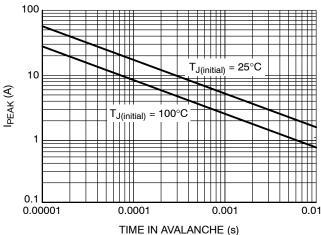


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

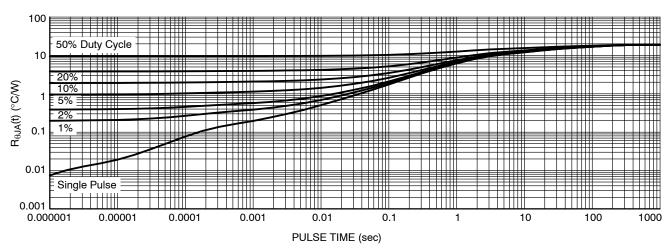


Figure 13. Thermal Characteristics

ORDERING INFORMATION

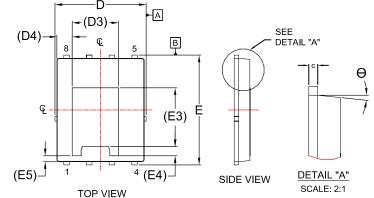
Device	Device Marking	Package	Shipping [†]
NTMFSC4D2N10MC	4D2N	DFN8 5x6.15 (Pb-Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DFN8 5x6.15, 1.27P, DUAL COOL CASE 506EG ISSUE D

DATE 25 AUG 2020

MILL**I**METERS


NOM.

0.90

MAX.

0.95

0.05

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM

A A1

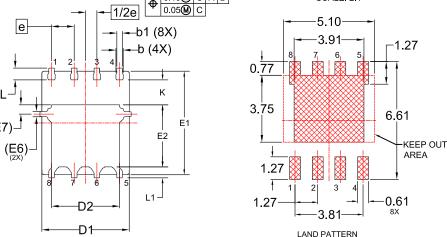
L1

θ

0.52

0°

0.62


0.72

12°

MIN.

0.85

FRONT VIEW SEE DETAIL "B" 8X 0.10	SEATING PLANE
0.10 @ C A B	DETAIL "B" SCALE: 2:1
e 1/2e	5.10

A2	-	-	0.05	
b	0.31	0.41	0.51	
b1	0.21	0.31	0.41	
С	0.20	0.25	0.30	
D	4.90	5.00	5.10	
D1	4.80	4.90	5.00	
D2	3.67	3.82	3.97	
D3		2.60 RE	F	
D4		0.86 RE	F	
Е	6.05	6.15	6.25	
E1	5.70	5.80	5.90	
E2	3.38	3.48	3.58	
E3	3.30 REF			
E4	0.50 REF			
E5	0.34 REF			
E6	0.30 REF			
E7	0.52 REF			
е	1.27 BSC			
1/2e	0.635 BSC			
K	1.30	1.40	1.50	
L	0.56	0.66	0.76	

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

XXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

XXXXXX	

DOCUMENT NUMBER:	98AON84257G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	DFN8 5x6.15. 1.27P. DUAL	COOL	PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES

REFERENCE MANUAL, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B