ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET - Power, Single **N-Channel, DFNW8**

150 V, 6.4 mΩ, 135 A

NTMTS6D0N15MC

Features

- Small Footprint (8x8 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

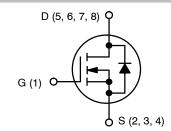
Typical Applications

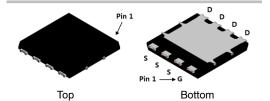
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter			Value	Unit
V _{DSS}	Drain-to-Source Voltage			150	V
V _{GS}	Gate-to-Source Voltage			±20	V
I _D	Continuous Drain Current R _{θJC} (Note 2)	Steady State	T _C = 25°C	135	Α
P _D	Power Dissipation $R_{\theta JC}$ (Note 2)			245	W
I _D	Continuous Drain Current R _{θJA} (Note 1, 2)	Steady State	T _A = 25°C	19	Α
P _D	Power Dissipation $R_{\theta JA}$ (Note 1, 2)			4.9	W
I _{DM}	Pulsed Drain Current	T _A = 25°C	C, t _p = 10 μs	900	Α
T _J , T _{stg}	Operating Junction and Storage Temperature Range			-55 to +175	°C
I _S	Source Current (Body Diode)			204	Α
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _L = 46.2 A _{pk} , L = 0.3 mH)			320	mJ
T _L	Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	6.4 mΩ @ 10 V	135 A
	6.9 mΩ @ 8 V	

N-CHANNEL MOSFET

DFNW8 8.3x8.4, 2P PQFN88 **CASE 507AP**

MARKING DIAGRAM

6D0N15MC **AWLYWW**

6D0N15MC = Specific Device Code = Assembly Location Α WL = Wafer Lot Code = Year Code WW = Work Week Code

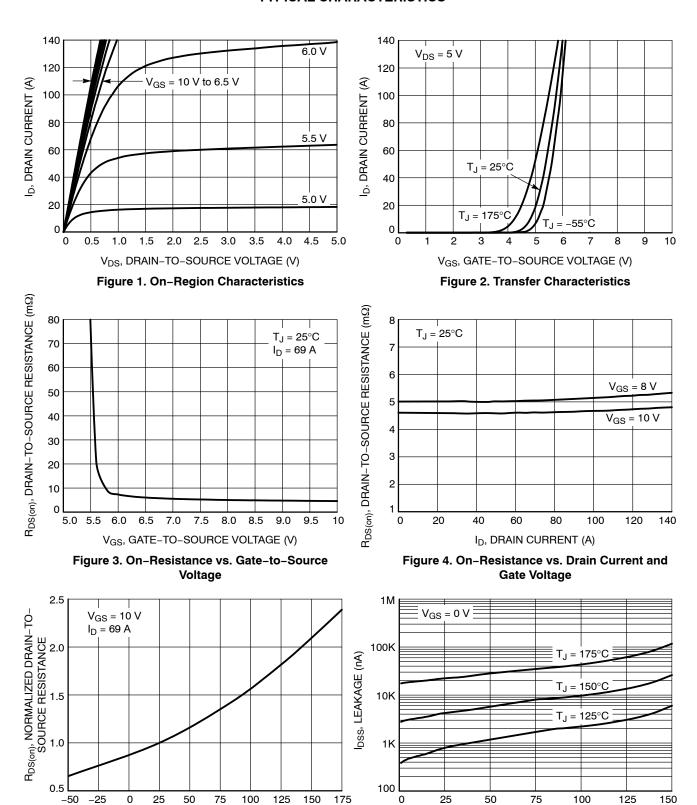
ORDERING INFORMATION

Device	Package	Shipping [†]
NTMTS6D0N15MC	DFNW8 PQFN88 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 2)	0.6	°C/W
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 2)	30.2	


ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Symbol	Parameter	Test Co	ondition	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS				•		
V _{(BR)DSS}	Drain – to – Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		150	_	-	V
V _{(BR)DSS} / T _J	Drain – to – Source Breakdown Voltage Temperature Coefficient	I _D = 250 μA, ref to 25°C		_	58.67	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 120 V	T _J = 25°C	-	_	1	μΑ
			T _J = 125°C	-	_	10	μΑ
I _{GSS}	Gate – to – Source Leakage Current	$V_{DS} = 0 V, V_{GS}$	= ±20 V	-	_	±100	nA
N CHARACTE	ERISTICS (Note 3)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D =$	= 379 μA	2.5	3.6	4.5	V
V _{GS(TH)} / T _J	Negative Threshold Temperature Coefficient	I _D = 250 μA, ref	to 25°C	-	-9.14	_	mV/°C
R _{DS(on)}	Drain – to – Source On Resistance	V _{GS} = 10 V, I _D = 69 A V _{GS} = 8 V, I _D = 34 A		-	4.6	6.4	mΩ
				_	5.0	6.9	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 69 A		_	127	_	S
R _G	Gate-Resistance	T _A = 25°C		_	1.1	-	Ω
HARGES & C	APACITANCES				ı	<u>I</u>	1
C _{ISS}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75V		_	4815	-	pF
C _{OSS}	Output Capacitance			_	1482	_	-
C _{RSS}	Reverse Transfer Capacitance			_	9.7	_	
Q _{G(TOT)}	Total Gate Charge	$V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V},$ $I_{D} = 69 \text{ A}$ $V_{GS} = 0 \text{ V}, V_{DS} = 75 \text{ V}$		_	58	_	nC
Q _{G(TH)}	Threshold Gate Charge			_	34	_	
Q _{GS}	Gate-to-Source Charge			_	26	_	
Q _{GD}	Gate-to-Drain Charge			_	8	_	
Q _{OSS}	Output Charge			-	173	_	nC
	HARACTERISTICS, VGS = 10 V (Note 3)				•		•
t _{d(ON)}	Turn – On Delay Time	V _{GS} = 10 V, V _D	_S =75 V,	-	30	_	ns
t _r	Rise Time	I _D = 69 A, R _G =	6 Ω	_	7	-	1
t _{d(OFF)}	Turn – Off Delay Time	-		-	38	_	1
t _f	Fall Time			-	6	-	1
RAIN-SOURC	E DIODE CHARACTERISTICS	•		•			
V _{SD}	Forward Diode Voltage	$V_{GS} = 0 V$,	T _J = 25°C	-	0.87	1.2	V
		I _S = 69 A	T _J = 125°C	-	0.7	_	1
t _{RR}	Reverse Recovery Time	$V_{\rm GS} = 0$ V, $dI_{\rm S}/dt = 100$ A/ μ s, $I_{\rm S} = 69$ A		-	72	-	ns
t _a	Charge Time			_	49	-	1
t _b	Discharge Time			_	23	-	1
Q _{RR}	Reverse Recovery Charge			_	125	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

T_J, JUNCTION TEMPERATURE (°C)

Figure 5. On-Resistance Variation with

Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 6. Drain-to-Source Leakage Current
vs. Voltage

TYPICAL CHARACTERISTICS

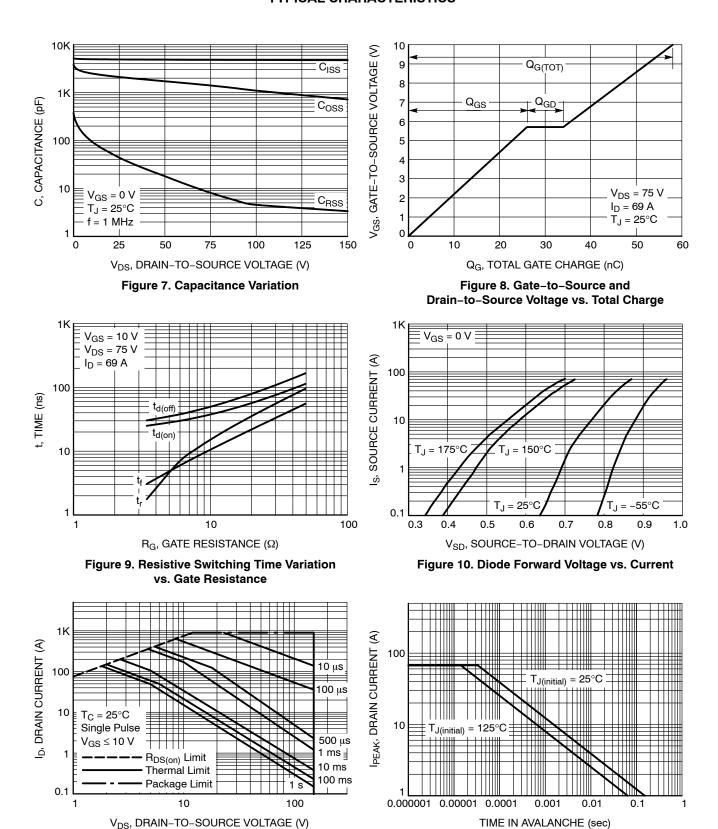


Figure 12. I_{PEAK} vs. Time in Avalanche

Figure 11. Safe Operating Area

TYPICAL CHARACTERISTICS

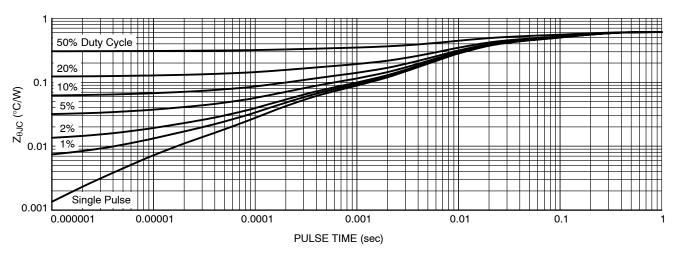
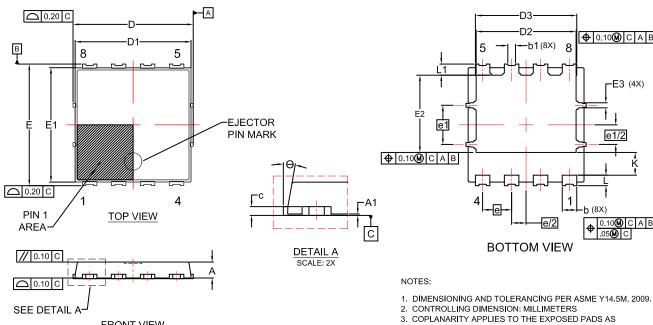
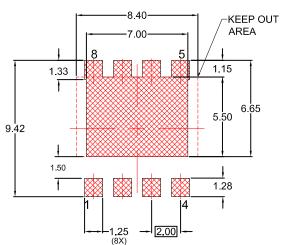




Figure 13. Thermal Characteristics

PACKAGE DIMENSIONS

DFNW8 8.3x8.4, 2P CASE 507AP ISSUE C

FRONT VIEW

RECOMMENDED LAND PATTERN*

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

- WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH,
- 4. DIMENSIONS DI AND ET DO NOT INCLUDE MOLES FEACH, PROTRUSIONS, OR GATE BURRS.

 5. SEATING PLANE IS DEFINED BY THE TERMINALS.

 "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MILLIMETERS				
J	MIN.	NOM.	MAX.		
Α	1.00	1.10	1.20		
A1	0.00	ì	0.05		
b	0.90	1.00	1.10		
b1	0.43	0.53	0.63		
O	0.23	0.28	0.33		
О	8.20	8.30	8.40		
D1	7.90	8.00	8.10		
D2	6.80	6.90	7.00		
D3	6.90	7.00	7.10		
Е	8.30	8.40	8.50		
E1	7.80	7.90	8.00		
E2	5.24	5.34	5.44		
E3	0.25	0.35	0.45		
е	2.00 BSC				
e/2	1.00 BSC				
e1	2.70 BSC				
e1/2	1.35 BSC				
K	1.50	1.57	1.70		
L	0.64	0.74	0.84		
L1	0.67	0.77	0.87		
Φ	0°		12°		

♦ 0.10**M** C A B

e1/2

0.10**M** C A B

b (8X)

-E3 (4X)

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor newsers on warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemn

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

IRFD120 JANTX2N5237 BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY IPS70R2K0CEAKMA1 SQD23N06-31L-GE3
TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7
STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B
IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y-TP MCQ7328-TP BXP7N65D BXP4N65F AOL1454G WMJ80N60C4 BXP2N20L
BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13 SLF10N65ABV2
BSO203SP BSO211P IPA60R230P6 IPA60R460CE