

MOSFET - Power, Single N-Channel 100 V, 1.7 mΩ, 267 A NTMTSC1D6N10MC

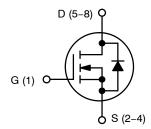
Features

- Small Footprint (8x8 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- New Power 88 Dual Cool Package
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltage	9		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	267	Α
Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C		189	
Power Dissipation	State	T _C = 25°C	P_{D}	291	W
R _{θJC} (Note 1)		T _C = 100°C		145	
Continuous Drain		T _A = 25°C	I _D	30	Α
Current R _{θJA} (Notes 1, 2, 3)	Steady	T _A = 100°C		21	
Power Dissipation	State	T _A = 25°C	P_{D}	3.9	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.9	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	900	Α
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C	
Source Current (Body Diode)		Is	243	Α	
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 22.3 A)		E _{AS}	1550	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

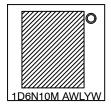

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Bottom - Steady State	$R_{\theta JCB}$	0.5	°C/W
Junction-to-Case - Top - Steady State	$R_{\theta JCT}$	0.8	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	38	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

1

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	1.7 m Ω @ 10 V	267 A



N-CHANNEL MOSFET

TDFNW8 CASE 507AS

MARKING DIAGRAM

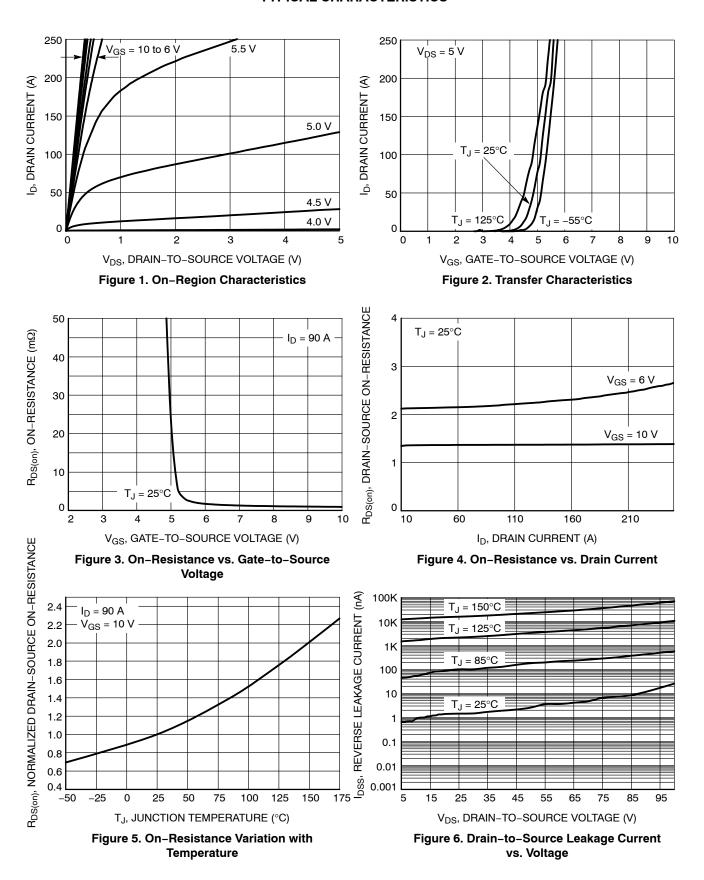
1D6N10M = Specific Device Code

A = Assembly Location
WL = Wafer Lot Code
Y = Year Code
W = Work Week Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				64.5		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25 °C			5	μΑ	
		V _{DS} = 100 V	T _J = 125°C			10		
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	s = 20 V			100	nA	
ON CHARACTERISTICS (Note 4)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = I_{DS}$	= 650 μΑ	2.0		4.0	V	
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-10		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 90 A		1.42	1.7	+	
		V _{GS} = 6 V	I _D = 58 A			4.3	mΩ	
Forward Transconductance	9FS	V _{DS} =5 V, I _D =	= 100 A		233		S	
CHARGES, CAPACITANCES & GATE RE	SISTANCE							
Input Capacitance	C _{ISS}				7630			
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 100 KH	Hz, V _{DS} = 50 V		4260		pF	
Reverse Transfer Capacitance	C _{RSS}				80			
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 50	0 V; I _D = 116 A		106			
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 50 V; I _D = 116 A			20		nC	
Gate-to-Source Charge	Q_{GS}				35			
Gate-to-Drain Charge	Q_{GD}				22			
Plateau Voltage	V_{GP}				5		V	
SWITCHING CHARACTERISTICS (Note 5	5)							
Turn-On Delay Time	t _{d(ON)}				34			
Rise Time	t _r	V _{GS} = 10 V. V _{DS}	s = 50 V.		24		ns ns	
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 10 \text{ V}, V_{DS}$ $I_{D} = 116 \text{ A}, R_{C}$	$G = 6 \Omega$		69			
Fall Time	t _f	1			29			
DRAIN-SOURCE DIODE CHARACTERIS	STICS				•	•	•	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V.	T _J = 25°C		0.83	1.2		
		$V_{GS} = 0 \text{ V},$ $I_{S} = 90 \text{ A}$	T _J = 125°C		0.7		V	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 58 \text{ A}$			54			
Charge Time	t _a				26		ns	
Discharge Time	t _b				28		1	
Reverse Recovery Charge	Q _{RR}				52		nC	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 1000 A/μs, I _S = 58 A			43			
Charge Time	t _a				23		ns	
Discharge Time	t _b				19		1	
Reverse Recovery Charge	Q _{RR}				385		nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

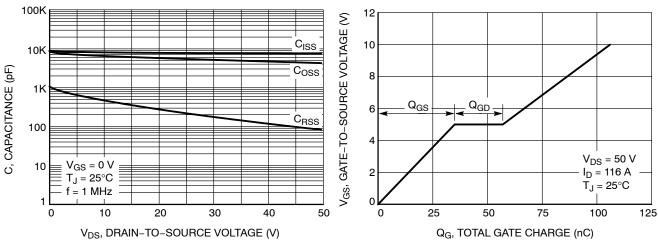


Figure 7. Capacitance Variation

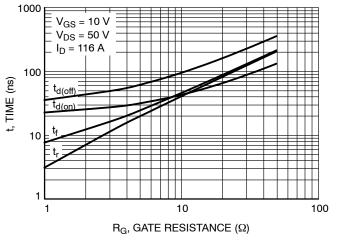


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

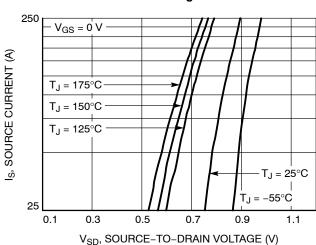


Figure 10. Diode Forward Voltage vs. Current

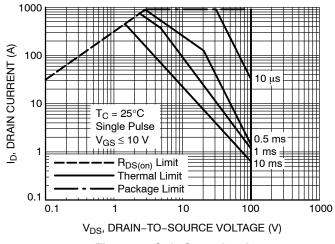


Figure 11. Safe Operating Area

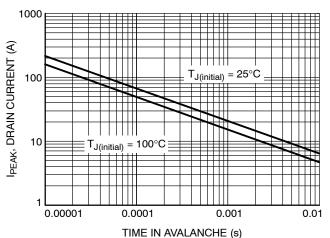


Figure 12. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS

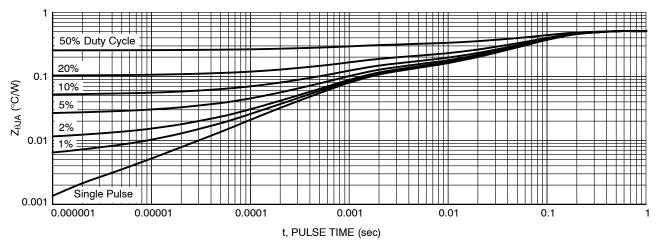
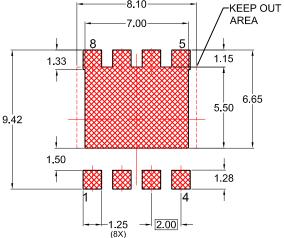


Figure 13. Junction-to-Ambient Transient Thermal Response


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMTSC1D6N10MCTXG	1D6N10M	POWER 88 Dual Cool (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TDFNW8 8.3x8.4, 2P CASE 507AS **ISSUE A** ► A 0.20 C D3-D1 D2 D4 **♦** 0.10**M** C A B -b1 (8X) B -D5-8 5 -E3 (4X) E5 Ë2 É1 e1 E4 e1/2 **⊕** 0.10**M** C A B 0.20 C 4 b (8X) PIN 1 -A1 **TOP VIEW ⊕** 0.10**M** C A B 0.05**M** C e/2 AREA: **BOTTOM VIEW** С NOTES: **DETAIL A** // 0.10 C 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. SCALE: 2X 2. CONTROLLING DIMENSION: MILLIMETERS 0.10 C 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS. 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, SEE DETAIL A 4. DIMENSIONS OF AND ET DO NOT INCLUDE MOLD FLAGH, PROTRUSIONS, OR GATE BURRS. 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. FRONT VIEW 8.10 KEEP OUT **AREA**

RECOMMENDED LAND PATTERN

	E LOWEST POINT ON THE MILLIMETERS			
DIM	MIN. NOM. MAX			
Α	0.82	0.92	1.02	
A1	0.00		0.05	
b	0.90	1.00	1.10	
b1	0.43	0.53	0.63	
С	0.23	0.28	0.33	
D	8.20	8.30	8.40	
D1	7.90	8.00	8.10	
D2	6.80	6.90	7.00	
D3	6.90	7.00	7.10	
D4	5.47	5.57	5.67	
D5	2.69	2.79	2.89	
E	8.30	8.40	8.50	
E1	7.80	7.90	8.00	
E2	5.24	5.34	5.44	
E3	0.25	0.35	0.45	
E4	6.03	6.13	6.23	
E5	2.72	2.82	2.92	
е	2.00 BSC			
e/2	1.00 BSC			
e1	2.70 BSC			
e1/2	1.35 BSC			
K	1.50	1.57	1.70	
L	0.64	0.74	0.84	
L1	0.67	0.77	0.87	
θ	0°		12°	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B