<u>MOSFET</u> - Power, Single, N-Channel, μ8FL

30 V, 23 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

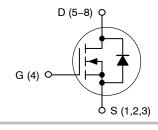
Applications

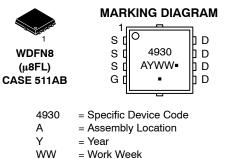
- DC-DC Converters
- Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	Drain-to-Source Voltage				
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		$T_A = 25^{\circ}C$	I _D	7.2	А
Current R _{θJA} (Note 1)		T _A = 85°C		5.2	
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	PD	2.06	W
Continuous Drain		T _A = 25°C	۱ _D	9.6	A
Current R _{θJA} ≤ 10 s (Note 1)		T _A = 85°C		6.9	
Power Dissipation $R_{\theta JA} \leq 10 \text{ s} \text{ (Note 1)}$	Steady	T _A = 25°C	PD	3.61	W
Continuous Drain	State	T _A = 25°C	I _D	4.5	А
Current $R_{\theta JA}$ (Note 2)		T _A = 85°C		3.2	
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	0.79	W
Continuous Drain		$T_{C} = 25^{\circ}C$	Ι _D	23	А
Current $R_{\theta JC}$ (Note 1)		$T_{C} = 85^{\circ}C$		16	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	20.2	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	92	А
Operating Junction and S	T _J , T _{stg}	–55 to +150	°C		
Source Current (Body Die	ode)		۱ _S	25	А
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain-to-So $(T_J = 25^{\circ}C, V_{DD} = 50 \text{ V}, \text{V}$ $I_L = 12 \text{ A}_{pk}, L = 0.1 \text{ mH}, \text{F}$	/ _{GS} = 10 V,		E _{AS}	7.2	mJ
Lead Temperature for So (1/8" from case for 10 s)	dering Pur	poses	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	23 mΩ @ 10 V	23 A
30 V	30 mΩ @ 4.5 V	23 A

N-Channel MOSFET

= Pb-Free Package
 (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4930NTAG	WDFN8 (Pb-Free)	1500/Tape & Reel
NTTFS4930NTWG	WDFN8 (Pb-Free)	5000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	6.2	°C/W
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	60.7	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	159	
Junction-to-Ambient – (t \leq 10 s) (Note 3)	$R_{\theta JA}$	34.6	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size (40 mm², 1 oz. Cu).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$				16		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 125^{\circ}C$			10	1
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V				±100	nA

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.2	1.6	2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}		I _D = 7 A		15	23	mΩ
		V _{GS} = 10 V	I _D = 10 A		15		
			I _D = 6 A		22.7	30	1
		V _{GS} = 4.5 V	I _D = 10 A		22.7		
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _D = 15 A			19		S

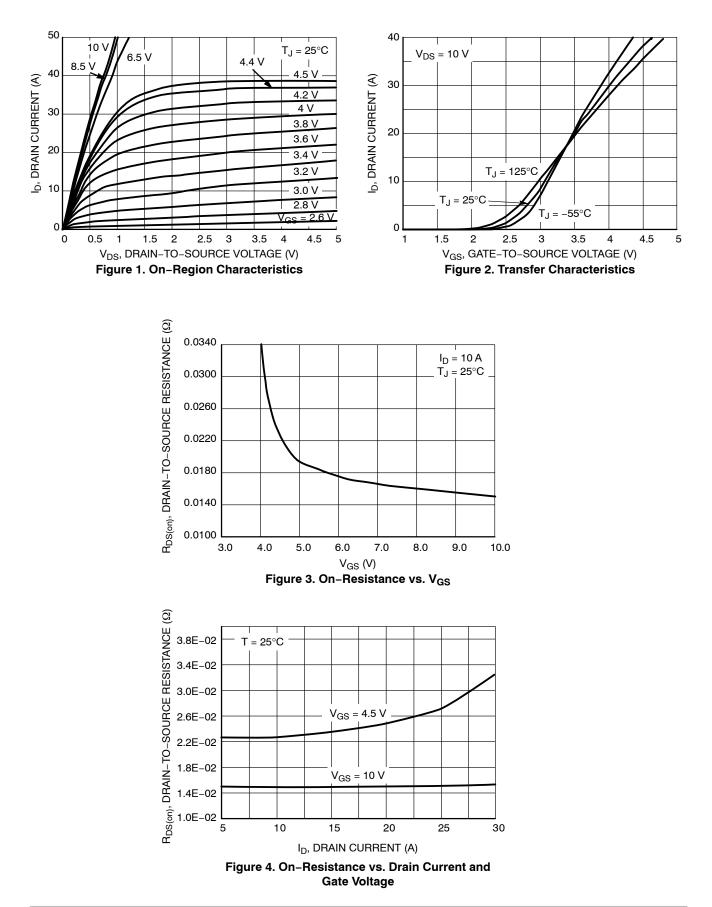
CHARGES AND CAPACITANCES

C _{iss}			476		pF
C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V		197		
C _{rss}			101		
Q _{G(TOT)}			5.6		nC
Q _{G(TH)}			0.5		
Q _{GS}	$v_{GS} = 4.5 \text{ V}, v_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$		1.5		
Q _{GD}	1		2.5		
Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 20 A		10.3		nC
	Coss Crss QG(TOT) QG(TH) QGS QGD	$\begin{tabular}{ c c c c c } \hline C_{oss} & $V_{GS} = 0 $ V, $f = 1.0 $ MHz, $V_{DS} = 15 $ V$ \\ \hline C_{rss} & $Q_{G(TOT)}$ \\ \hline $Q_{G(TOT)}$ & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, $I_{D} = 20 $ A$ \\ \hline Q_{GD} & $V_{GS} = 4.5 $ V, $V_{DS} = 15 $ V, V	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 197 \\ \hline C_{rss} & 101 \\ \hline $Q_{G(TOT)}$ \\ \hline $Q_{G(TH)}$ \\ \hline Q_{GS} & V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 20 A & 0.5 \\ \hline Q_{GD} & 1.5 \\ \hline 2.5 & 2.5 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 197 \\ \hline U_{Crss} & 101 \\ \hline $Q_{G(TOT)}$ \\ \hline $Q_{G(TH)}$ \\ \hline Q_{GS} & V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 20 A & 0.5 \\ \hline U_{GS} & 0.5 \\ \hline U_{GS} & 1.5 \\ \hline U_{GS} & 2.5 \\ \hline U_{GS} & 0.5 $

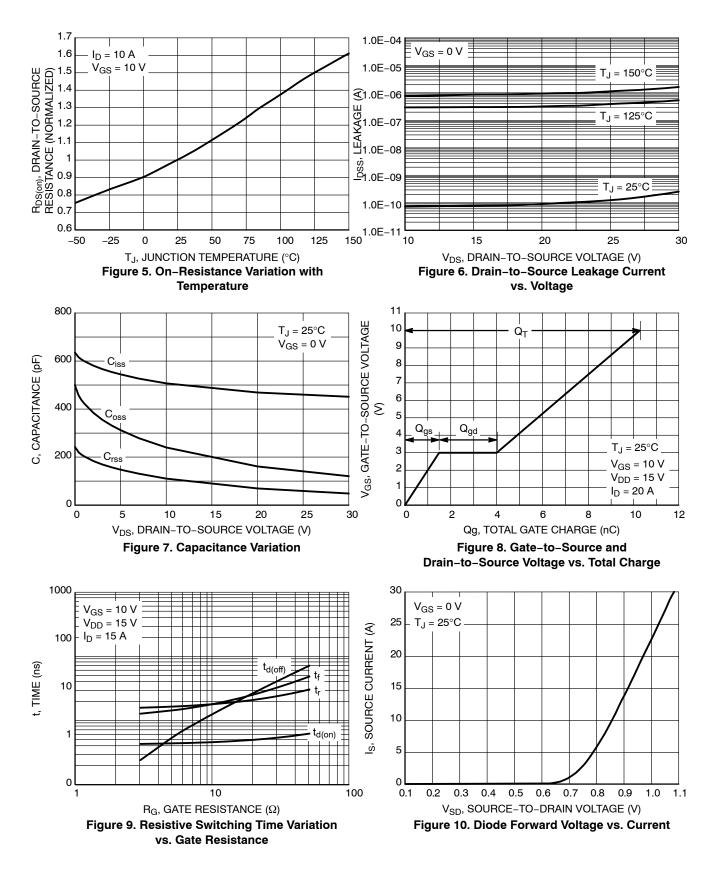
SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(on)}		8.4	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	26.6	
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D}$ = 15 A, R _G = 3.0 Ω	10.4	
Fall Time	t _f		3.6	

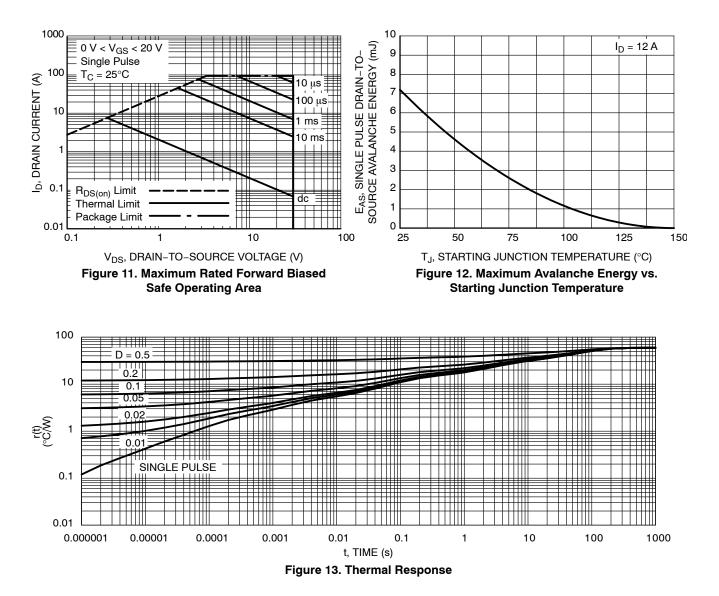
5. Pulse Test: pulse width = 300 $\mu s,$ duty cycle \leq 2%.


6. Switching characteristics are independent of operating junction temperatures.

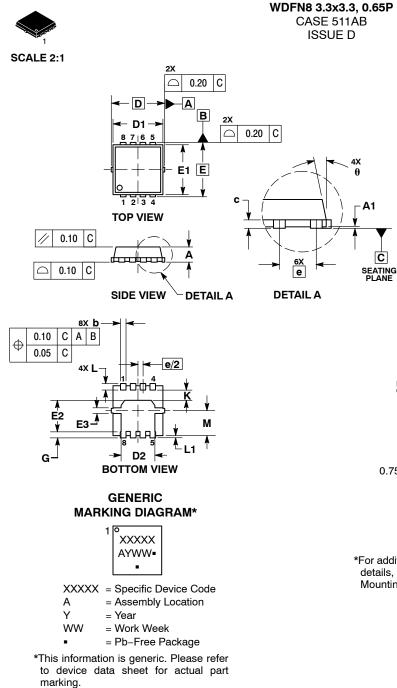
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC	S (Note 6)						
Turn-On Delay Time	t _{d(on)}				4.6		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS}	= 15 V,		17.6		
Turn-Off Delay Time	t _{d(off)}	V _{GS} = 10 V, V _{DS} I _D = 15 A, R _G =	3.0 Ω		13.3		
Fall Time	t _f				2.5		
DRAIN-SOURCE DIODE CHARA	ACTERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.97	1.2	V
	$I_{\rm S} = 20 {\rm A}$	T _J = 125°C		0.89			
Reverse Recovery Time	t _{RR}	•			15.3		ns
Charge Time	t _a	V_{GS} = 0 V, d _{IS} /d _t =	100 A/us,		7.4		
Discharge Time	t _b	$I_{\rm S} = 20$ A			7.9		
Reverse Recovery Charge	Q _{RR}				4.6		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				0.38		nH
Drain Inductance	L _D	T 0-00	<u> </u>		0.054		
Gate Inductance	L _G	T _A = 25°0	;		1.3		
Gate Resistance	R _G				0.6		Ω

5. Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

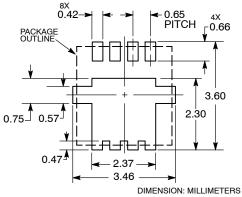

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

DATE 23 APR 2012


Pb-Free indicator, "G" or microdot " .", may or may not be present.

NOTES: LES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. 1.

2. 3.

	м	LLIMETE	RS		INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
с	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC		0.130 BSC			
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E		3.30 BSC		0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е	0.65 BSC			(0.026 BS0	2	
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
м	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Repose Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: WDFN8 3.3X3.3, 0.65P							
	to make changes without further notice to any	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation					

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B