MOSFET - Small Signal, Complementary, SOT-963, $1.0 \times 1.0 \mathrm{~mm}$

20 V, 220 mA / -200 mA

Features

- Complementary MOSFET Device
- Offers a Low $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Solution in the Ultra Small 1.0x1.0 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile ($<0.5 \mathrm{~mm}$) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics.
- This is a $\mathrm{Pb}-$ Free Device

Applications

- Load Switch with Level Shift
- Optimized for Power Management in Ultra Portable Equipment

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			$\mathrm{V}_{\text {DSS }}$	20	V
Gate-to-Source Voltage			V_{GS}	± 8	V
N -Channel Continuous Drain Current (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	I_{D}	220	mA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		160	
	$\mathrm{t} \leq 5 \mathrm{~s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		280	
P-Channel Continuous Drain Current (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-200	
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		-140	
	$\mathrm{t} \leq 5 \mathrm{~s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-250	
Power Dissipation (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	125	mW
	$\mathrm{t} \leq 5 \mathrm{~s}$			200	
Pulsed Drain Current	N-Channel	$\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	I_{DM}	800	mA
	P-Channel			-600	
Operating Junction and Storage Temperature			$\begin{gathered} \mathrm{T}_{\mathrm{J},} \\ \mathrm{~T}_{\mathrm{STG}} \end{gathered}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode) (Note 2)			Is	200	mA
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.
2. Pulse Test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$

ON Semiconductor ${ }^{\oplus}$
www.onsemi.com

$\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$ Max	$\mathrm{I}_{\mathrm{D}} \mathrm{Max}$
$\begin{aligned} & \mathrm{N} \text {-Channel } \\ & 20 \mathrm{~V} \end{aligned}$	1.5Ω @ 4.5 V	0.22 A
	2.0Ω @ 2.5 V	
	3.0Ω @ 1.8 V	
	4.5Ω @ 1.5 V	
$\begin{aligned} & \text { P-Channel } \\ & 20 \mathrm{~V} \end{aligned}$	5.0Ω @ -4.5V	-0.2 A
	6.0Ω @ -2.5 V	
	7.0Ω @ -1.8V	
	$10 \Omega @-1.5 \mathrm{~V}$	

PINOUT: SOT-963

ORDERING INFORMATION

Device	Package	Shipping †
NTUD3169CZT5G	SOT-963 (Pb-Free)	$8000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTUD3169CZ

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State, Minimum Pad (Note 3)	$\mathrm{R}_{\text {өJA }}$	1000	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - t $\leq 5 \mathrm{~s}$ (Note 3)		600	

3. Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz. Cu.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	N/P	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	$V_{(B R) D S S}$	N	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	20			V
		P		$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-20			
Zero Gate Voltage Drain Current	$\mathrm{I}_{\text {dss }}$	N	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			50	nA
				$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$			200	
		P	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-50	
				$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$			-200	
Zero Gate Voltage Drain Current	IDSs	N	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=16 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$			100	nA
		P	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-16 \mathrm{~V}$				-100	
Gate-to-Source Leakage Current	IGSS	N	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 5.0 \mathrm{~V}$				± 100	nA
		P					± 100	

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	N	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}$	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.4		1.0	V
		P		$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.4		-1.0	
Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	N	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$			0.75	1.5	Ω
		P	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}$			2.0	5.0	
		N	$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$			1.0	2.0	
		P	$\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-50 \mathrm{~mA}$			2.6	6.0	
		N	$\mathrm{V}_{\mathrm{GS}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$			1.4	3.0	
		P	$\mathrm{V}_{\mathrm{GS}}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-20 \mathrm{~mA}$			3.4	7.0	
		N	$\mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			1.8	4.5	
		P	$\mathrm{V}_{\mathrm{GS}}=-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}$			4.0	10	
		N	$\mathrm{V}_{\mathrm{GS}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$			2.8		
		P	$\mathrm{V}_{\mathrm{GS}}=-1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~mA}$			6.0		
Forward Transconductance	grs	N	$\mathrm{V}_{\mathrm{DS}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=125 \mathrm{~mA}$			0.48		
		P	$\mathrm{V}_{\mathrm{DS}}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-125 \mathrm{~mA}$			0.35		S
Source-Drain Diode Voltage	$\mathrm{V}_{S D}$	N	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, $\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.6	1.0	V
		P	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$			-0.6	-1.0	

CAPACITANCES

Input Capacitance	$\mathrm{Cl}_{\text {ISS }}$	N	$\begin{gathered} f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} \end{gathered}$	12.5	pF
Output Capacitance	Coss			3.6	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$			2.6	
Input Capacitance	$\mathrm{C}_{\text {ISS }}$	P	$\begin{gathered} f=1 \mathrm{MHz}, V_{G S}=0 V \\ V_{D S}=-15 V \end{gathered}$	13.5	
Output Capacitance	Coss			3.8	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$			2.0	

4. Switching characteristics are independent of operating junction temperatures

NTUD3169CZ

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	N/P	Test Condition	Min	Typ	Max	Unit
SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ (Note 4)							
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	N	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{G}}=2.0 \Omega \end{gathered}$		16.5		ns
Rise Time	t_{r}				25.5		
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$				142		
Fall Time	t_{f}				80		
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	P	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=-200 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=2.0 \Omega \end{gathered}$		26		
Rise Time	t_{r}				46		
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{OFF})}$				196		
Fall Time	t_{f}				145		

4. Switching characteristics are independent of operating junction temperatures

NTUD3169CZ

TYPICAL CHARACTERISTICS (N-CHANNEL)

Figure 1. On-Region Characteristics

$V_{G S}$, GATE-TO-SOURCE VOLTAGE (V)
Figure 3. On-Resistance vs. Gate Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS (N-CHANNEL)

GATE-TO-SOURCE AND DRAIN-TO-SOURCE VOLTAGE (V)
Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

Figure 9. Diode Forward Voltage vs. Current

NTUD3169CZ

TYPICAL CHARACTERISTICS (P-CHANNEL)

VDS , DRAIN-TO-SOURCE VOLTAGE (V)
Figure 10. On-Region Characteristics
V_{GS}, GATE-TO-SOURCE VOLTAGE (V)
Figure 12. On-Resistance vs. Gate Voltage

Figure 14. On-Resistance Variation with Temperature

VGs, GATE-TO-SOURCE VOLTAGE (V)
Figure 11. Transfer Characteristics

Figure 13. On-Resistance vs. Drain Current and Gate Voltage

Figure 15. Drain-to-Source Leakage Current vs. Voltage

NTUD3169CZ

TYPICAL CHARACTERISTICS (P-CHANNEL)

Figure 16. Capacitance Variation

Figure 17. Resistive Switching Time Variation vs. Gate Resistance

Figure 18. Diode Forward Voltage vs. Current

SOT-963
CASE 527AD-01 ISSUE E
SCALE 4:1

TOP VIEW

SIDE VIEW

$$
\text { BOTTOM VIEW } \begin{array}{|l|l|l|l|}
\hline & 0.08 & \mathrm{X} & \mathrm{Y} \\
\hline
\end{array}
$$

STYLE 1:
PIN 1. EMITTER 1 2. BASE 1
3. COLLECTOR 2
4. EMITTER 2
5. BASE 2
6. COLLECTOR 1

STYLE 4:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR

STYLE 7 :
PIN 1. CAThode
2. ANODE
3. CATHODE
4. CATHODE
5. ANODE
6. CATHODE

STYLE 10:
PIN 1. CATHODE 1
2. N / C
3. CATHODE 2
4. ANODE 2
5. N / C
6. ANODE 1

STYLE 2:
PIN 1. EMITTER 1
2. EMITTER2
3. BASE 2
4. COLLECTOR 2
5. BASE 1
6. COLLECTOR 1

STYLE 5:
PIN 1. CATHODE
2. CATHODE
3. ANODE
4. ANODE
5. CATHODE

STYLE 8:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SOURCE
5. DRAIN
6. DRAIN

STYLE 3:
PIN 1. CATHODE 1
2. CATHODE 1
3. ANODE/ANODE 2
4. CATHODE 2
6. ANODE/ANODE 1

STYLE 6:
PIN 1. CATHODE
2. ANODE
2. ANTHEDE
3. CATHODE
4. CATHODE
6. CATHODE

STYLE 9:
PIN 1. SOURCE 1
2. GATE 1
3. DRAIN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

| DOCUMENT NUMBER: | 98AON26456D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-963, 1X1, 0.35P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM
MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E
NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W
FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967
NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S
SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

