Integrated Relay, Inductive Load Driver

This device is used to switch inductive loads such as relays, solenoids incandescent lamps, and small DC motors without the need of a free-wheeling diode. The device integrates all necessary items such as the MOSFET switch, ESD protection, and Zener clamps. It accepts logic level inputs thus allowing it to be driven by a large variety of devices including logic gates, inverters, and microcontrollers.

Features

- Provides a Robust Driver Interface Between D.C. Relay Coil and Sensitive Logic Circuits
- Optimized to Switch Relays from 3.0 V to 5.0 V Rail
- Capable of Driving Relay Coils Rated up to 2.5 W at 5.0 V
- Internal Zener Eliminates the Need of Free-Wheeling Diode
- Internal Zener Clamp Routes Induced Current to Ground for Quieter Systems Operation
- Low V_{DS(on)} Reduces System Current Drain
- Pb-Free Package is Available

Typical Applications

- Telecom: Line Cards, Modems, Answering Machines, FAX
- Computers and Office: Photocopiers, Printers, Desktop Computers
- Consumer: TVs and VCRs, Stereo Receivers, CD Players, Cassette Recorders
- Industrial: Small Appliances, Security Systems, Automated Test Equipment, Garage Door Openers
- Automotive: 5.0 V Driven Relays, Motor Controls, Power Latches, Lamp Drivers

ON

ON Semiconductor®

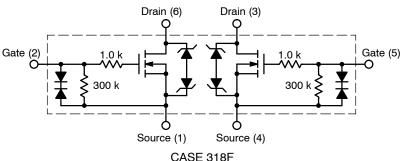
http://onsemi.com

Relay, Inductive Load Driver 0.5 Amp, 8.0 V Clamp

SC-74 CASE 318F STYLE 7

JW4 = Specific Device Code

D = Date Code ■ Pb-Free Package


(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NUD3105DMT1	SC-74	3000/Tape & Reel
NUD3105DMT1G	SC-74 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

INTERNAL CIRCUIT DIAGRAMS

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise specified)

Symbol	Rating	Value	Unit
V_{DSS}	Drain to Source Voltage - Continuous	6.0	V_{dc}
V_{GS}	Gate to Source Voltage – Continuous	6.0	V _{dc}
I _D	Drain Current – Continuous	500	mA
E _z	Single Pulse Drain-to-Source Avalanche Energy (T _{Jinitial} = 25°C)	50	mJ
T_J	Junction Temperature	150	°C
T _A	Operating Ambient Temperature	-40 to 85	°C
T _{stg}	Storage Temperature Range		°C
P _D	Total Power Dissipation (Note 1) Derating Above 25°C	380 1.5	mW mW/°C
$R_{\theta JA}$	Thermal Resistance Junction-to-Ambient	329	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

TYPICAL ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS	•	•		•
V _{BRDSS}	Drain to Source Sustaining Voltage (Internally Clamped) (I _D = 10 mA)	6.0	8.0	9.0	V
B _{VGSO}	I _g = 1.0 mA	-	-	8.0	V
I _{DSS}	Drain to Source Leakage Current $ (V_{DS} = 5.5 \text{ V} , V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}) $ $ (V_{DS} = 5.5 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 85^{\circ}\text{C}) $		- -	15 15	μΑ
I _{GSS}	Gate Body Leakage Current $(V_{GS} = 3.0 \text{ V}, V_{DS} = 0 \text{ V})$ $(V_{GS} = 5.0 \text{ V}, V_{DS} = 0 \text{ V})$	5.0 -	- -	35 65	μΑ
ON CHARA	CTERISTICS	•			
V _{GS(th)}	Gate Threshold Voltage $ (V_{GS} = V_{DS}, I_D = 1.0 \text{ mA}) $ $ (V_{GS} = V_{DS}, I_D = 1.0 \text{ mA}, T_J = 85^{\circ}\text{C}) $	0.8 0.8	1.2	1.4 1.4	V
R _{DS(on)}	Drain to Source On–Resistance $ \begin{array}{l} (I_D=250 \text{ mA, V}_{GS}=3.0 \text{ V}) \\ (I_D=500 \text{ mA, V}_{GS}=3.0 \text{ V}) \\ (I_D=500 \text{ mA, V}_{GS}=3.0 \text{ V}) \\ (I_D=500 \text{ mA, V}_{GS}=5.0 \text{ V}) \\ (I_D=500 \text{ mA, V}_{GS}=3.0 \text{ V, T}_{J}=85^{\circ}\text{C}) \\ (I_D=500 \text{ mA, V}_{GS}=5.0 \text{ V, T}_{J}=85^{\circ}\text{C}) \end{array} $	- - - -	- - - - -	1.2 1.3 0.9 1.3 0.9	Ω
I _{DS(on)}	Output Continuous Current $ (V_{DS} = 0.25 \text{ V}, V_{GS} = 3.0 \text{ V}) \\ (V_{DS} = 0.25 \text{ V}, V_{GS} = 3.0 \text{ V}, T_J = 85^{\circ}\text{C}) $	300 200	400 -	- -	mA
9FS	Forward Transconductance (V _{OUT} = 5.0 V, I _{OUT} = 0.25 A)	350	570	-	mMhos

This device contains ESD protection and exceeds the following tests:
 Human Body Model 2000 V per MIL_STD-883, Method 3015.
 Machine Model Method 200 V.

TYPICAL ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit
DYNAMIC (CHARACTERISTICS				
C _{iss}	Input Capacitance $(V_{DS} = 5.0 \text{ V}, V_{GS} = 0 \text{ V}, f = 10 \text{ kHz})$	-	25	-	pF
C _{oss}	Output Capacitance (V _{DS} = 5.0 V, V _{GS} = 0 V, f = 10 kHz)	-	37	-	pF
C _{rss}	Transfer Capacitance (V _{DS} = 5.0 V, V _{GS} = 0 V, f = 10 kHz)	-	8.0	-	pF

SWITCHING CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Max	Units
	Propagation Delay Times:				nS
t _{PHL}	High to Low Propagation Delay; Figure 1 (5.0 V)	_	25	_	
t _{PLH}	Low to High Propagation Delay; Figure 1 (5.0 V)	_	80	-	
t _{PHL}	High to Low Propagation Delay; Figure 1 (3.0 V)	_	44	_	
t _{PLH}	Low to High Propagation Delay; Figure 1 (3.0 V)	-	44	_	
	Transition Times:				nS
t _f	Fall Time; Figure 1 (5.0 V)	_	23	_	
t _r	Rise Time; Figure 1 (5.0 V)	-	32	-	
t _f	Fall Time; Figure 1 (3.0 V)	_	53	_	
t _r	Rise Time; Figure 1 (3.0 V)	_	30	_	-

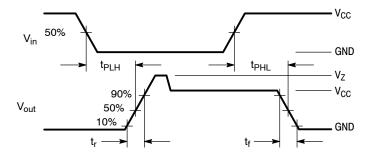


Figure 1. Switching Waveforms

TYPICAL CHARACTERISTICS

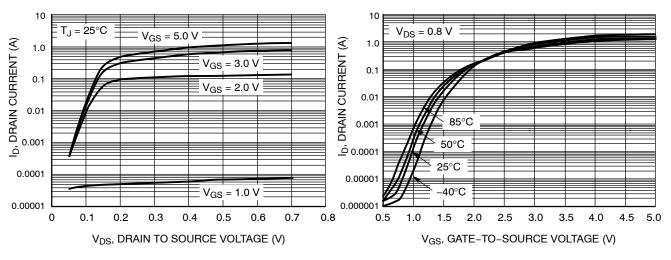


Figure 2. Output Characteristics

Figure 3. Transfer Function

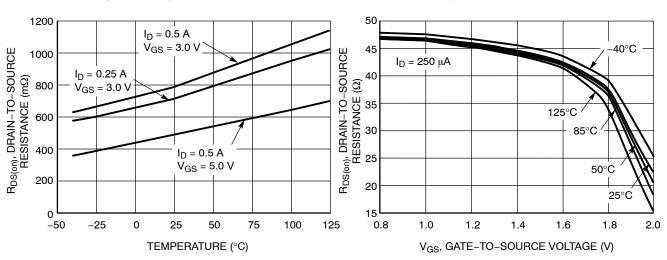


Figure 4. On Resistance Variation vs. Temperature

Figure 5. R_{DS(ON)} Variation with Gate-To-Source Voltage

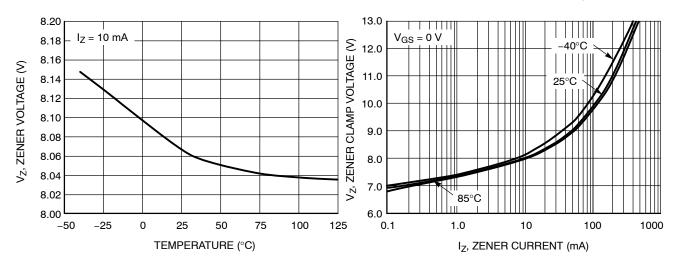


Figure 6. Zener Voltage vs. Temperature

Figure 7. Zener Clamp Voltage vs. Zener Current

TYPICAL CHARACTERISTICS

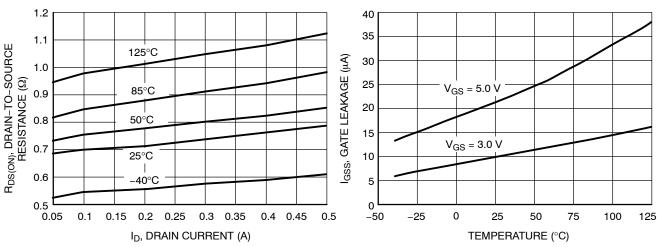


Figure 8. On-Resistance vs. Drain Current and Temperature

Figure 9. Gate Leakage vs. Temperature

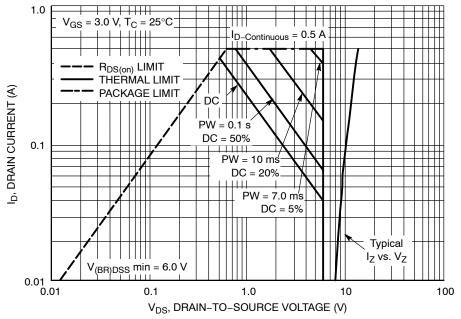


Figure 10. Safe Operating Area for NUD3105DLT1

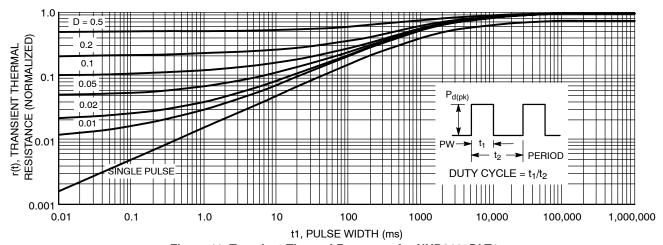


Figure 11. Transient Thermal Response for NUD3105DLT1

Designing with this Data Sheet

- 1. Determine the maximum inductive load current (at max V_{CC} , min coil resistance & usually minimum temperature) that the NUD3105D will have to drive and make sure it is less than the max rated current.
- 2. For pulsed operation, use the Transient Thermal Response of Figure 11 and the instructions with it to determine the maximum limit on transistor power dissipation for the desired duty cycle and temperature range.
- 3. Use Figures 10 and 11 with the SOA notes to insure that instantaneous operation does not push the device beyond the limits of the SOA plot.

- Verify that the circuit driving the gate will meet the V_{GS(th)} from the Electrical Characteristics table
- 5. Using the max output current calculated in step 1, check Figure 7 to insure that the range of Zener clamp voltage over temperature will satisfy all system & EMI requirements.
- 6. Use I_{GSS} and I_{DSS} from the Electrical Characteristics table to insure that "OFF" state leakage over temperature and voltage extremes does not violate any system requirements.
- 7. Review circuit operation and insure none of the device max ratings are being exceeded.

APPLICATIONS DIAGRAMS

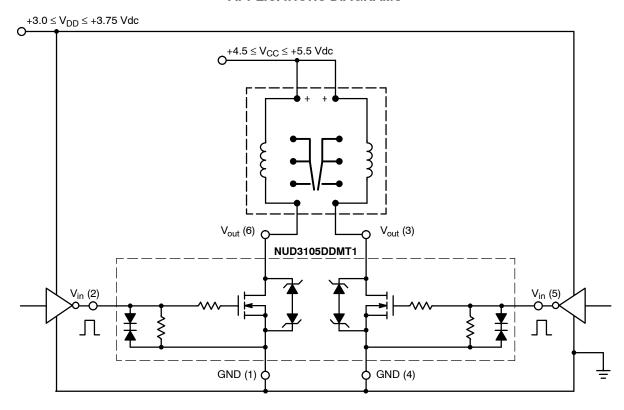


Figure 12. A 200 mW, 5.0 V Dual Coil Latching Relay Application with 3.0 V Level Translating Interface

Max Continuous Current Calculation

for TX2–5V Relay, R1 = 178 Ω Nominal @ R_A = 25°C Assuming $\pm 10\%$ Make Tolerance, R1 = 178 Ω * 0.9 = 160 Ω Min @ T_A = 25°C T_C for Annealed Copper Wire is 0.4%/°C R1 = 160 Ω * [1+(0.004) * (-40°-25°)] = 118 Ω Min @ -40°C I_O Max = (5.5 V Max – 0.25V) /118 Ω = 45 mA

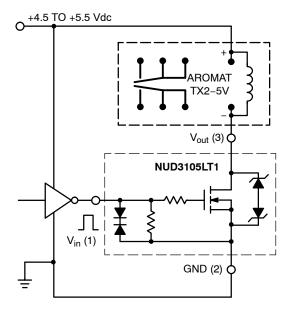


Figure 13. A 140 mW, 5.0 V Relay with TTL Interface

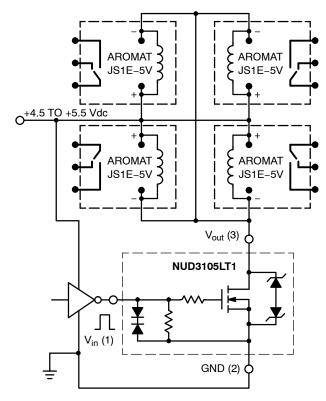
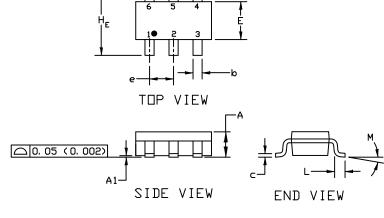


Figure 14. A Quad 5.0 V, 360 mW Coil Relay Bank


SC-74 CASE 318F ISSUE P

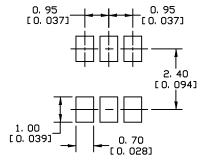
DATE 07 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- 2. CONTROLLING DIMENSION: INCHES
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
A	0. 90	1. 00	1. 10	0. 035	0. 039	0. 043
A1	0. 01	0. 06	0. 10	0. 001	0. 002	0. 004
ھ	0. 25	0. 37	0. 50	0. 010	0. 015	0. 020
С	0.10	0. 18	0. 26	0. 004	0. 007	0. 010
D	2. 90	3. 00	3. 10	0. 114	0. 118	0. 122
E	1. 30	1. 50	1. 70	0. 051	0. 059	0. 067
е	0. 85	0. 95	1. 05	0. 034	0. 037	0. 041
Η _E	2. 50	2. 75	3. 00	0. 099	0. 108	0. 118
L	0. 20	0. 40	0. 60	0. 008	0. 016	0. 024
М	0*		10*	0*		10*

GENERIC MARKING DIAGRAM*



XXX = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the UN Seniconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 2: PIN 1. NO CONNECTION 2. COLLECTOR 3. EMITTER 4. NO CONNECTION 5. COLLECTOR 6. BASE	STYLE 3: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 4: PIN 1. COLLECTOR 2 2. EMITTER 1/EMITTER 2 3. COLLECTOR 1 4. EMITTER 3 5. BASE 1/BASE 2/COLLECTOR 3 6. BASE 3	STYLE 5: PIN 1. CHANNEL 1 2. ANODE 3. CHANNEL 2 4. CHANNEL 3 5. CATHODE 6. CHANNEL 4	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1 6. COLLECTOR 1	STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHOD 4. ANODE 5. CATHODE 6. COLLECTOR	E

DOCUMENT NUMBER:	98ASB42973B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-74		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

89076GBEST 00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP
5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP
00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000
01312 0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P
6131-220-21149P 6131-260-2358P 6131-265-11149P