Industrial Inductive Load Driver

NUD3160, SZNUD3160

This micro-integrated part provides a single component solution to switch inductive loads such as relays, solenoids, and small DC motors without the need of a free-wheeling diode. It accepts logic level inputs, thus allowing it to be driven by a large variety of devices including logic gates, inverters, and microcontrollers.

Features

- Provides Robust Interface between D.C. Relay Coils and Sensitive Logic
- Capable of Driving Relay Coils Rated up to 150 mA at $12 \mathrm{~V}, 24 \mathrm{~V}$ or 48 V
- Replaces 3 or 4 Discrete Components for Lower Cost
- Internal Zener Eliminates Need for Free-Wheeling Diode
- Meets Load Dump and other Automotive Specs
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Automotive and Industrial Environment
- Drives Window, Latch, Door, and Antenna Relays

Benefits

- Reduced PCB Space
- Standardized Driver for Wide Range of Relays
- Simplifies Circuit Design and PCB Layout
- Compliance with Automotive Specifications

ON Semiconductor ${ }^{\text {® }}$

www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NUD3160LT1G	SOT-23 $($ Pb-Free $)$	 Reel
SZNUD3160LT1G	SOT-23 (Pb-Free) $)$	 Reel
NUD3160DMT1G	SC-74 (Pb-Free)	 Reel
SZNUD3160DMT1G	SC-74 (Pb-Free) $)$	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Internal Circuit Diagrams

MAXIMUM RATINGS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Rating	Value	Unit
$\mathrm{V}_{\text {DSS }}$	Drain-to-Source Voltage - Continuous ($\mathrm{T}_{J}=125^{\circ} \mathrm{C}$)	60	V
$V_{\text {GSS }}$	Gate-to-Source Voltage - Continuous ($\mathrm{J}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)	12	V
ID	Drain Current - Continuous ($T_{J}=125^{\circ} \mathrm{C}$) Minimum copper, double sided board, $\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$ SOT-23 SC74 Single device driven SC74 Both devices driven $1 \mathrm{in}^{2}$ copper, double sided board, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SOT-23 SC74 Single device driven SC74 Both devices driven	$\begin{gathered} 158 \\ 157 \\ 132 \text { ea } \\ \\ 272 \\ 263 \\ 230 \text { ea } \end{gathered}$	mA
$\mathrm{E}_{\text {z }}$	Single Pulse Drain-to-Source Avalanche Energy (For Relay's Coils/Inductive Loads of 80Ω or Higher) (T_{J} Initial $=85^{\circ} \mathrm{C}$)	200	mJ
$\mathrm{P}_{\text {PK }}$	Peak Power Dissipation, Drain-to-Source (Notes 1 and 2) $\text { (} \mathrm{T}_{\mathrm{J}} \text { Initial }=85^{\circ} \mathrm{C} \text {) }$	20	W
$\mathrm{E}_{\text {LD1 }}$	Load Dump Pulse, Drain-to-Source (Note 3) $R_{\text {SOURCE }}=0.5 \Omega, \mathrm{~T}=300 \mathrm{~ms}$) (For Relay's Coils/Inductive Loads of 80Ω or Higher) (T_{J} Initial $=85^{\circ} \mathrm{C}$)	60	V
ELD2	Inductive Switching Transient 1, Drain-to-Source (Waveform: R $_{\text {SOURCE }}=10 \Omega, \mathrm{~T}=2.0 \mathrm{~ms}$) (For Relay's Coils/Inductive Loads of 80Ω or Higher) (T_{J} Initial $=85^{\circ} \mathrm{C}$)	100	V
ELD3	Inductive Switching Transient 2, Drain-to-Source (Waveform: R ${ }_{\text {SOURCE }}=4.0 \Omega, \mathrm{~T}=50 \mu \mathrm{~s}$) (For Relay's Coils/Inductive Loads of 80Ω or Higher) (T_{J} Initial $=85^{\circ} \mathrm{C}$)	300	V
Rev-Bat	Reverse Battery, 10 Minutes (Drain-to-Source) (For Relay's Coils/Inductive Loads of 80Ω or more)	-14	V
Dual-Volt	Dual Voltage Jump Start, 10 Minutes (Drain-to-Source)	28	V
ESD	Human Body Model (HBM) According to EIA/JESD22/A114 Specification	2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Rating		Value	Unit
T_{A}	Operating Ambient Temperature		-40 to 125	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65 to 150	${ }^{\circ} \mathrm{C}$
P_{D}	Total Power Dissipation (Note 4) Derating above $25^{\circ} \mathrm{C}$	SOT-23	$\begin{gathered} 225 \\ 1.8 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
P_{D}	Total Power Dissipation (Note 4) Derating above $25^{\circ} \mathrm{C}$	SC-74	$\begin{gathered} 380 \\ 3.0 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction-to-Ambient Minimum Copper $300 \text { mm² Copper }$	SOT-23 SC-74 One Device Powered SC-74 Both Devices Equally Powered SOT-23 SC-74 One Device Powered SC-74 Both Devices Equally Powered	$\begin{aligned} & 556 \\ & 556 \\ & 398 \\ & 395 \\ & 420 \\ & 270 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. Nonrepetitive current square pulse 1.0 ms duration.
2. For different square pulse durations, see Figure 12.
3. Nonrepetitive load dump pulse per Figure 3.
4. Mounted onto minimum pad board.

ELECTRICAL CHARACTERISTICS $\left(T_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain to Source Sustaining Voltage $\left(\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {BRDSS }}$	61	66	70	V
Drain to Source Leakage Current $\begin{aligned} & \left(V_{D S}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}\right) \end{aligned}$	IDSS	- - -	-	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 50 \\ & 80 \end{aligned}$	$\mu \mathrm{A}$
Gate Body Leakage Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{GS}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	IGSS	-	- - -	$\begin{gathered} 60 \\ 80 \\ 90 \\ 110 \end{gathered}$	$\mu \mathrm{A}$

ON CHARACTERISTICS

Gate Threshold Voltage $\begin{aligned} & \left(V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}\right) \\ & \left(V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}, T_{J}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.3 1.3	1.8	2.0 2.0	V
Drain to Source On-Resistance $\begin{aligned} & \left(\mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=3.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=3.0 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	-	-	$\begin{aligned} & 2.4 \\ & 3.7 \\ & 1.8 \\ & 2.9 \end{aligned}$	Ω
Output Continuous Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DS}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{I}_{\text {DS(on) }}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	200	-	mA
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}\right)$	grs	-	400	-	mmho

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(V_{\mathrm{DS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	30	-	pf
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	14	-	pf
Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	6.0	-	pf

SWITCHING CHARACTERISTICS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NUD3160, SZNUD3160
TYPICAL WAVEFORMS
($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Figure 2. Switching Waveforms

Load Dump Pulse Not Suppressed:
$\mathrm{V}_{\mathrm{r}}=13.5 \mathrm{~V}$ Nominal $\pm 10 \%$
$\mathrm{V}_{\mathrm{S}}=60 \mathrm{~V}$ Nominal $\pm 10 \%$
$\mathrm{T}=300 \mathrm{~ms}$ Nominal $\pm 10 \%$
$\mathrm{t}_{\mathrm{r}}=1-10 \mathrm{~ms} \pm 10 \%$

Figure 3. Load Dump Waveform Definition

TYPICAL PERFORMANCE CURVES
($T_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Figure 4. Drain-to-Source Leakage vs. Junction Temperature

Figure 6. Breakdown Voltage vs.
Junction Temperature

Figure 8. Transfer Function

Figure 5. Gate-to-Source Leakage vs. Junction Temperature

Figure 7. Output Characteristics

Figure 9. On Resistance Variation vs Junction Temperature

TYPICAL PERFORMANCE CURVES
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Figure 10. On Resistance Variation vs. Gate-to-Source Voltage

P_{W}, PULSE WIDTH (ms)
Figure 12. Maximum Non-repetitive Surge Power vs. Pulse Width

Figure 11. Zener Clamp Voltage vs. Zener Current

Figure 13. Thermal Performance vs. Board Copper Area

NUD3160, SZNUD3160
APPLICATIONS INFORMATION

Figure 14. Applications Diagram

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.

SC-74
CASE 318F
ISSUE P
SCALE 2:1

[^1]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :

```
00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-
1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-
RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P}\mathrm{ 6131-
220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63
```


[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

