6-Channel EMI Filter with Integrated ESD Protection

The NUF6001MU is a six-channel ($\mathrm{C}-\mathrm{R}-\mathrm{C}$) Pi-style EMI filter array with integrated ESD protection. Its typical component values of $\mathrm{R}=100 \Omega$ and $\mathrm{C}=17 \mathrm{pF}$ deliver a cutoff frequency of 120 MHz and stop band attenuation greater than -30 dB from 800 MHz to 3.0 GHz .

This performance makes the part ideal for parallel interfaces with data rates up to 80 Mbps in applications where wireless interference must be minimized. The specified attenuation range is very effective in minimizing interference from $2 \mathrm{G} / 3 \mathrm{G}$, GPS, Bluetooth ${ }^{\circledR}$ and WLAN signals.

The NUF6001MU is available in the low-profile 12-lead $1.2 \times 2.5 \mathrm{~mm}$ UDFN12 surface mount package.

Features/Benefits

- $\pm 18 \mathrm{kV}$ ESD Protection on each channel (IEC61000-4-2 Level 4, Contact Discharge)
- $\pm 16 \mathrm{kV}$ ESD Protection on each channel (HBM)
- R/C Values of 100Ω and 17 pF deliver Exceptional S21 Performance Characteristics of $120 \mathrm{MHz} \mathrm{f}_{3 \mathrm{~dB}}$ and -30 dB Stop Band Attenuation from 800 MHz to 3.0 GHz
- Integrated EMI/ESD System Solution in UDFN Package Offers Exceptional Cost, System Reliability and Space Savings
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- EMI Filtering for LCD and Camera Data Lines
- EMI Filtering and Protection for I/O Ports and Keypads

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com
MARKING
DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping †
NUF6001MUT2G	UDFN12 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. Electrical Schematic

Figure 2. Typical Insertion Loss Curve

NUF6001MU

Figure 3. Pin Diagram
Table 1. FUNCTIONAL PIN DESCRIPTION

Filter	Device Pins	Description
Filter 1	$1 \& 12$	Filter + ESD Channel 1
Filter 2	$2 \& 11$	Filter + ESD Channel 2
Filter 3	$3 \& 10$	Filter + ESD Channel 3
Filter 4	$4 \& 9$	Filter + ESD Channel 4
Filter 5	$5 \& 8$	Filter + ESD Channel 5
Filter 6	$6 \& 7$	Filter + ESD Channel 6
Ground Pad	GND	Ground

MAXIMUM RATINGS $\left(T_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Value	Unit
ESD IEC61000-4-2 (Contact Discharge) Human Body Model Machine Model		$\begin{aligned} & 18 \\ & 16 \\ & 1.6 \end{aligned}$	kV
DC Power per Resistor	P_{R}	100	mW
DC Power per Package	P_{T}	600	mW
Operating Temperature Range	T_{OP}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering Purposes (1.8 in from case for 10 seconds)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Maximum Reverse Working Voltage	$\mathrm{V}_{\mathrm{RWM}}$				5.0	V
Breakdown Voltage	V_{BR}	$\mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~mA}$	6.0	7.0	8.0	V
Leakage Current	I_{R}	$\mathrm{V}_{\mathrm{RWM}}=3.3 \mathrm{~V}$		10	100	nA
Resistance	R_{A}	$\mathrm{I}_{\mathrm{R}}=20 \mathrm{~mA}$	85	100	115	Ω
Diode Capacitance	C_{d}	$\mathrm{V}_{\mathrm{R}}=2.5 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		17	22	pF
Line Capacitance	C_{L}	$\mathrm{V}_{\mathrm{R}}=2.5 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		34	44	pF
3 dB Cut-Off Frequency (Note 1)	$\mathrm{f}_{3 \mathrm{~dB}}$	Above this frequency, appreciable attenuation occurs		120		MHz
6 dB Cut-Off Frequency (Note 1)	$\mathrm{f}_{3 \mathrm{~dB}}$	Above this frequency, appreciable attenuation occurs		185		MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. 50Ω source and 50Ω load termination.

NUF6001MU

TYPICAL PERFORMANCE CURVES $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Figure 4. Typical Insertion Loss Curve

Figure 6. Typical Capacitance vs. Reverse Biased Voltage
(Normalized Capacitance, Cd @ 2.5 V)

Figure 5. Typical Analog Crosstalk

Figure 7. Typical Resistance over Temperature

NUF6001MU

Theory of Operation

The NUF6001MU combines ESD protection and EMI filtering conveniently into a small package for today's size constrained applications. The capacitance inherent to a typical protection diode is utilized to provide the capacitance value necessary to create the desired frequency response based upon the series resistance in the filter. By combining this functionality into one device, a large number of discrete components are integrated into one small package saving valuable board space and reducing BOM count and cost in the application.

Application Example

The accepted practice for specifying bandwidth in a filter is to use the 3 dB cutoff frequency. Utilizing points such as the 6 dB or 9 dB cutoff frequencies results in signal degradation in an application. This can be illustrated in an application example. A typical application would include EMI filtering of data lines in a camera or display interface. In such an example it is important to first understand the signal and its spectral content. By understanding these things, an appropriate filter can be selected for the desired application. A typical data signal is pattern of 1's and 0's transmitted over a line in a form similar to a square wave. The maximum frequency of such a signal would be the pattern $1-0-1-0$ such that for a signal with a data rate of 100 Mbps , the maximum frequency component would be 50 MHz . The next item to consider is the spectral content of the signal, which can be understood with the Fourier series
approximation of a square wave, shown below in Equations 1 and 2 in the Fourier series approximation.

From this it can be seen that a square wave consists of odd order harmonics and to fully construct a square wave n must go to infinity. However, to retain an acceptable portion of the waveform, the first two terms are generally sufficient. These two terms contain about 85% of the signal amplitude and allow a reasonable square wave to be reconstructed. Therefore, to reasonably pass a square wave of frequency x the minimum filter bandwidth necessary is $3 x$. All ON Semiconductor EMI filters are rated according to this principle. Attempting to violate this principle will result in significant rounding of the waveform and cause problems in transmitting the correct data. For example, take the filter with the response shown in Figure 8 and apply three different data waveforms. To calculate these three different frequencies, the $3 \mathrm{~dB}, 6 \mathrm{~dB}$, and 9 dB bandwidths will be used.

Equation 1:

$$
\begin{equation*}
x(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{a}\left[\frac{1}{2 n-1} \sin \left((2 n-1) \omega_{0} t\right)\right] \tag{eq.1}
\end{equation*}
$$

Equation 2 (simplified form of Equation 1):

$x(t)=\frac{1}{2}+\frac{2}{\pi}\left[\frac{\sin \left(\omega_{0} t\right)}{1}+\frac{\sin \left(3 \omega_{0} t\right)}{3}+\frac{\sin \left(5 \omega_{0} t\right)}{5}+\ldots\right]$ (eq. 2)

Figure 8. Filter Bandwidth

From the above paragraphs it is shown that the maximum supported frequency of a waveform that can be passed through the filter can be found by dividing the bandwidth by a factor of three (to obtain the corresponding data rate
multiply the result by two). The following table gives the bandwidth values and the corresponding maximum supported frequencies and the third harmonic frequencies.

NUF6001MU

Table 2. Frequency Chart

Bandwidth	Maximum Supported Frequency	Third Harmonic Frequency
$3 \mathrm{~dB}-$ 100 MHz	$33.33 \mathrm{MHz}\left(\mathrm{f}_{1}\right)$	100 MHz
$6 \mathrm{~dB}-$ 200 MHz	$66.67 \mathrm{MHz}\left(\mathrm{f}_{2}\right)$	200 MHz
$9 \mathrm{~dB}-$ 300 MHz	$100 \mathrm{MHz}\left(\mathrm{f}_{3}\right)$	300 MHz

Considering that 85% of the amplitude of the square is in the first two terms of the Fourier series approximation most of the signal content is at the fundamental (maximum supported) frequency and the third harmonic frequency. If a signal with a frequency of 33.33 MHz is input to this filter, the first two terms are sufficiently passed such that the signal is only mildly affected, as is shown in Figure 9a. If a signal
with a frequency of 66.67 MHz is input to this same filter, the third harmonic term is significantly attenuated. This serves to round the signal edges and skew the waveform, as is shown in Figure 9b. In the case that a 100 MHz signal is input to this filter, the third harmonic term is attenuated even further and results in even more rounding of the signal edges as is shown in Figure 9c. The result is the degradation of the data being transmitted making the digital data (1 's and 0 's) more difficult to discern. This does not include effects of other components such as interconnect and other path losses which could further serve to degrade the signal integrity. While some filter products may specify the 6 dB or 9 dB bandwidths, actually using these to calculate supported frequencies (and corresponding data rates) results in significant signal degradation. To ensure the best signal integrity possible, it is best to use the 3 dB bandwidth to calculate the achievable data rate.

Figure 9. Input and Output Waveforms of Filter

UDFN12 2.5x1.2, 0.4P
CASE 517AE ISSUE C

SCALE 4:1

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 23 OCT 2012

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	NOM	MAX
A	0.45	0.50	0.55
A1	0.00	0.03	0.05
A3	0.127 REF		
b	0.15	0.20	0.25
D	2.50 BSC		
D2	1.70	1.80	1.90
E	1.20 BSC		
E2	0.20	0.30	0.40
e	0.40 BSC		
K	0.20 TYP		
L	0.20	0.25	0.30
L1	---	$--\quad 0.10$	

GENERIC
MARKING DIAGRAM*

XXX = Specific Device Code
M $\quad=$ Month Code

- $\quad=$ Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, " G " or microdot " $\mathrm{\wedge}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON22155D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN12 2.5X1.2, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any as.
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

