

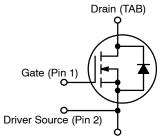
Silicon Carbide (SiC) MOSFET - 44 mohm, 650 V, M2, D2PAK-7L NVBG060N065SC1

	TI	ır	

- Typ. $R_{DS(on)} = 44 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 60 \text{ m}\Omega$ @ $V_{GS} = 15 \text{ V}$
- Ultra Low Gate Charge (Q_{G(tot)} = 74 nC)
- Low Output Capacitance (Coss = 133 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- RoHS Compliant

Typical Applications

- Automotive On Board Charger
- Automotive DC/DC Converter for EV/HEV


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Para	Symbol	Value	Unit		
Drain-to-Source Volta	V_{DSS}	650	V		
Gate-to-Source Voltage	ge		V _{GS}	-8/+22	V
Recommended Operatives of Gate – Source \		T _C < 175°C	V_{GSop}	-5/+18	٧
Continuous Drain Current (Note 2)	Steady T _C = 25°C State		I _D	46	Α
Power Dissipation (Note 2)			P _D	170	W
Continuous Drain Current (Notes 1, 2)	Steady State T _C = 100°C		I _D	33	Α
Power Dissipation (Notes 1, 2)			P _D	85	W
Pulsed Drain Current (Note 3) T _C = 25°C			I _{DM}	130	Α
Operating Junction and Range	T _J , T _{stg}	-55 to +175	°C		
Source Current (Body	I _S	46	Α		
Single Pulse Drain-to- Energy (I _L = 10.1 A _{pk} ,	E _{AS}	51	mJ		
Maximum Lead Tempe from Case for 10 Seco		oldering, 1/8"	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface mounted on a FR-4 board using1 in2 pad of 2 oz copper.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. Repetitive rating, limited by max junction temperature.
- 4. E_{AS} of 51 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 10.1 A, V_{DD} = 50 V, V_{GS} = 18 V.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	70 m Ω @ 18 V	46 A

Power Source (Pins 3, 4, 5, 6, 7)

N-CHANNEL MOSFET

D2PAK-7L CASE 418BJ

MARKING DIAGRAM

BG060N 065SC1 AYWWZZ

BG060N065SC1 = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Тур	Max	Units
Thermal Resistance Junction-to-Case (Note 2)	$R_{ heta JC}$	0.88	_	°C/W
Thermal Resistance Junction-to-Ambient (Notes 1, 2)	$R_{ heta JA}$	-	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 \	V, I _D = 1 mA	650			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 20 mA, refer to 25°C (Note 5)			0.15		V/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V	T _J = 25°C			10	μΑ
		V _{DS} = 650 V	T _J = 175°C (Note 5)			1	mA
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +18/-	-5 V, V _{DS} = 0 V			250	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 6.5 mA	1.8	2.8	4.3	V
Recommended Gate Voltage	V_{GOP}			-5		+18	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 15 V, I _D	= 20 A, T _J = 25°C		60		mΩ
		V _{GS} = 18 V, I _D	= 20 A, T _J = 25°C		44	70	
		V _{GS} = 18 V, I _D = (Ne	= 20 A, T _J = 175°C ote 5)		50		
Forward Transconductance	9FS	V _{DS} = 10 V, I _D) = 20 A (Note 5)		11		S
CHARGES, CAPACITANCES & GATE RESI	STANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 325 V (Note 5)			1473		pF
Output Capacitance	C _{OSS}				133		1
Reverse Transfer Capacitance	C _{RSS}				13		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/18 \text{ V}, V_{DS} = 520 \text{ V},$ $I_{D} = 20 \text{ A}$ (Note 5)			74		nC
Gate-to-Source Charge	Q _{GS}				20		
Gate-to-Drain Charge	Q_{GD}				23		
Gate-Resistance	R_{G}	f = 1 MHz			3.9		Ω
SWITCHING CHARACTERISTICS					1	I	ı
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -5/18$	V, V _{DS} = 400 V,		11		ns
Rise Time	t _r		$R_G = 2.2 \Omega$, tive Load		14		
Turn-Off Delay Time	t _{d(OFF)}	(Ne	ote 5)		24		1
Fall Time	t _f				11		
Turn-On Switching Loss	E _{ON}				45		μJ
Turn-Off Switching Loss	E _{OFF}	1			18		
Total Switching Loss	E _{TOT}				63		
SOURCE-DRAIN DIODE CHARACTERISTI	cs						
Continuous Source-Drain Diode Forward Current	I _{SD}		V, T _J = 25°C ote 5)			46	А
Pulsed Source-Drain Diode Forward Current (Note 3)	I _{SDM}	V _{GS} = -5 V, T _J = 25°C (Note 5)				130	А
Forward Diode Voltage	V _{SD}	$V_{GS} = -5 \text{ V}, I_{SD}$	= 20 A, T _J = 25°C		4.3		V

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
SOURCE-DRAIN DIODE CHARACTERISTICS								
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/18 \text{ V}, I_{SD} = 20 \text{ A},$		17.7		ns		
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs (Note 5)		90.6		nC		
Reverse Recovery Energy	E _{REC}			8.7		μJ		
Peak Reverse Recovery Current	I _{RRM}			10.2		Α		
Charge time	Ta			9.8		ns		
Discharge time	Tb			7.8		ns		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Defind by design, not subject to production test.

TYPICAL CHARACTERISTICS

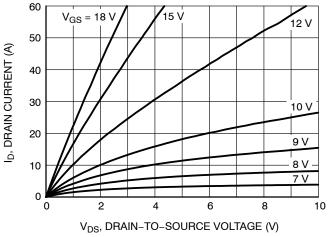


Figure 1. On-Region Characteristics

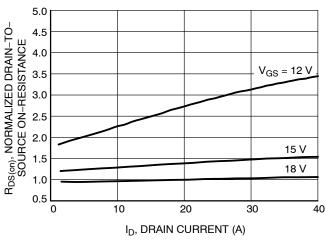


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

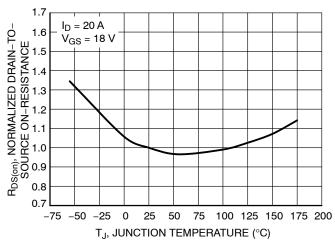


Figure 3. On–Resistance Variation with Temperature

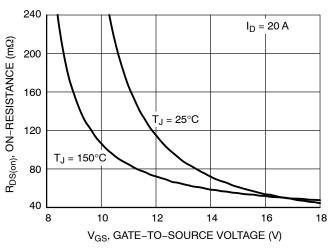


Figure 4. On-Resistance vs. Gate-to-Source Voltage

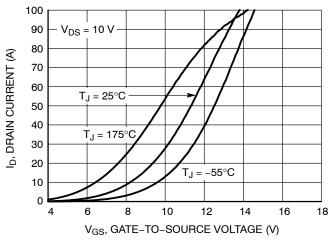


Figure 5. Transfer Characteristics

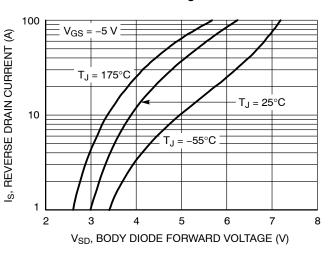


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

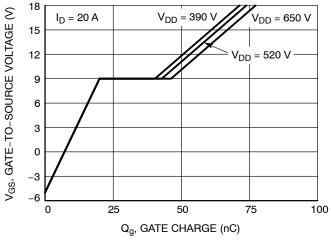


Figure 7. Gate-to-Source Voltage vs. Total Charge

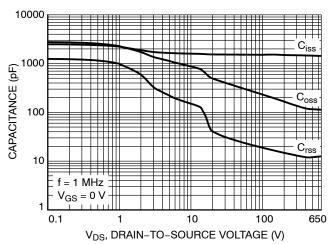


Figure 8. Capacitance vs. Drain-to-Source Voltage

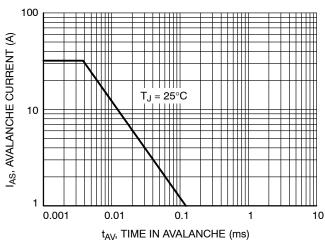


Figure 9. Unclamped Inductive Switching Capability

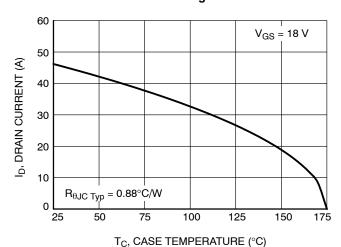


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

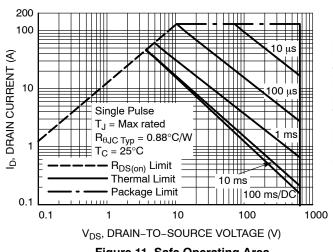


Figure 11. Safe Operating Area

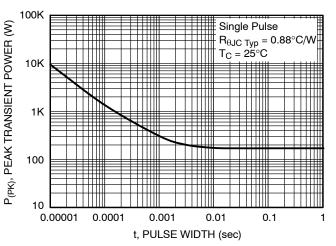


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

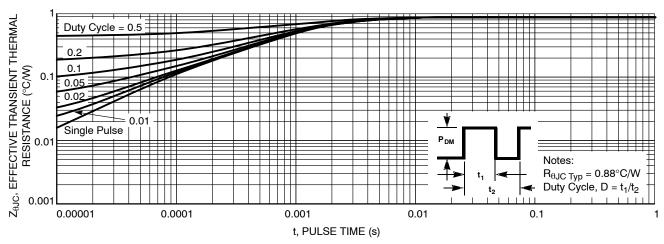
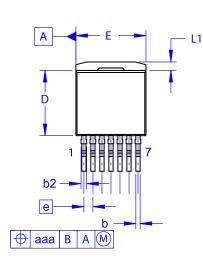
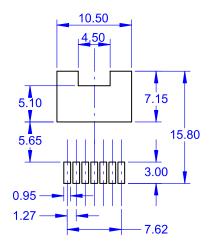


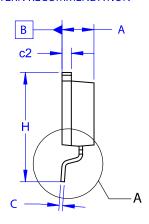
Figure 13. Junction-to-Case Transient Thermal Response


DEVICE ORDERING INFORMATION

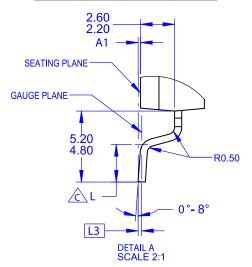

Device	Package	Shipping [†]
NVBG060N065SC1	D2PAK-7L	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


D²PAK7 (TO-263-7L HV) CASE 418BJ **ISSUE B**

LAND PATTERN RECOMMENDATION


NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE.

 D. DIMENSION AND TOLERANCE AS PER ASME
 Y14.5-2009.

 E. DIMENSIONS ARE EXCLUSIVE OF BURRS,
 MOLD FLASH AND TIE BAR PROTRUSIONS.

DIM	MILLIMETERS				
DIIVI	MIN	NOM	MAX		
Α	4.30	4.50	4.70		
A1	0.00	0.10	0.20		
b2	0.60	0.70	0.80		
b	0.51	0.60	0.70		
С	0.40	0.50	0.60		
c2	1.20	1.30	1.40		
D	9.00	9.20	9.40		
D1	6.15	6.80	7.15		
Е	9.70	9.90	10.20		
E1	7.15	7.65	8.15		
е	~	1.27	~		
Н	15.10	15.40	15.70		
L	2.44	2.64	2.84		
L1	1.00	1.20	1.40		
L3	~	0.25	~		
aaa	~	~	0.25		

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

IRFD120 JANTX2N5237 2SK2267(Q) BUK455-60A/B BUZ80 TK100A10N1,S4X(S MIC4420CM-TR VN1206L NDP4060 SI4482DY IRS2092STRPBF-EL IPS70R2K0CEAKMA1 SQM120N06-3M5L-GE3 TK31J60W,S1VQ(O TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG P85W28HP2F-7071 NTE2384 DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 IPS60R360PFD7SAKMA1 DMN2990UFB-7B SSM3K35CT,L3F IPLK60R1K0PFD7ATMA1 2N7002W-G MCAC30N06Y-TP IPWS65R035CFD7AXKSA1 MCQ7328-TP SSM3J143TU,LXHF DMN12M3UCA6-7 PJMF280N65E1_T0_00201 PJMF380N65E1 TO 00201 PJMF280N60E1 TO 00201