

MOSFET - Power, Single N-Channel, D2PAK-7L 650 V, 89 mΩ, 37 A

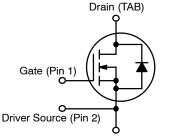
NVBG089N65S3F

Description

SUPERFET® III MOSFET is **onsemi's** brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate.

Consequently, SUPERFET III MOSFET is very suitable for the various power system for miniaturization and higher efficiency. SUPERFET III FRFET® MOSFET's optimized reverse recovery performance of body diode can remove additional component and improve system reliability.

In addition, the D2PAK 7 lead package offers Kelvin sense. This allows higher switching speeds and gives designers the ability to reduce the overall application footprint.


Features

- $700 \text{ V} @ \text{T}_{\text{J}} = 150^{\circ}\text{C}$
- Typ. $R_{DS(on)} = 70 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 74 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 668 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Automotive On Board Charger
- Automotive DC/DC Converter for BEV

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(ON)} MAX	
650 V	89 mΩ @ 10 V	37 A

Power Source (Pins 3, 4, 5, 6, 7)

N-CHANNEL MOSFET

D2PAK-7L CASE 418BJ

MARKING DIAGRAM

VBG089 N65S3F AYWWZZ

VBG089N65S3F = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

1

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise stated)

Symbol	Parameter		Value	Unit
V_{DSS}	Drain-to-Source Voltage		650	V
V_{GS}	Gate-to-Source Voltage	- DC	±30	V
		- AC (f > 1 Hz)	±30	
I _D	Drain Current	– Continuous (T _C = 25°C)	37	Α
		– Continuous (T _C = 100°C)	24.3	1
I _{DM}	Drain Current	- Pulsed (Note 1)	92	Α
E _{AS}	Single Pulse Avalanche Energy (Note 2)		480	mJ
I _{AS}	Avalanche Current		4.7	Α
E _{AR}	Repeated Avalanche Energy (Note 1)		2.92	mJ
dv/dt	MOSFET dv/dt Peak Diode Recovery dv/dt (Note 3)		100	V/ns
			50	1
P_{D}	Power Dissipation	Tc = 25°C	291	W
		- Derate Above 25°C	2.33	W/°C
T _J , T _{stg}	Operating Junction and Storage Temperature Range		-55 to 150	°C
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Repetitive rating: pulse – width limited by maximum junction temperature.
2. $I_{AS} = 4.7 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$.
3. $I_{SD} \leq 18.5 \text{ A}$, di/dt $\leq 200 \text{ A}/\mu\text{s}$, $V_{DD} \leq 400 \text{ V}$, starting $T_C = 25^{\circ}\text{C}$.

Table 2. THERMAL RESISTANCE RATINGS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case, Max.		°C/W
$R_{\theta JA}$	R _{θJA} Thermal Resistance, Junction–to–Ambient, Max.		

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARAC	CTERISTICS					l.
BV _{DSS} [Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$	650	-	-	V
		V _{GS} = 0 V, I _D = 10 mA, T _J = 150°C	700	-	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, Referenced to 25°C	-	0.63	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V	-	-	10	μΑ
		V _{DS} = 520 V, T _C = 125°C	-	11	-	μΑ
I _{GSS}	Gate-to-Body Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
ON CHARAC	TERISTICS				•	
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 0.97 \text{ mA}$	3	-	5	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 18.5 A	-	70	89	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 18.5 A	-	21	-	S
DYNAMIC CH	IARACTERISTICS				•	
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz	-	3598	_	pF
C _{oss}	Output Capacitance		-	64	-	pF
C _{oss(eff.)}	Effective Output Capacitance	$V_{DS} = 0$ to 400 V, $V_{GS} = 0$ V	-	668	-	pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 to 400 V, V _{GS} = 0 V	-	114	-	pF
Q _{g(total)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 18.5 A,	-	74	-	nC
Q_{gs}	Gate-to-Source Gate Charge	V _{GS} = 10 V (Note 4)	-	12	-	nC
Q_{gd}	Gate-to-Drain "Miller" Charge		-	29	-	nC
ESR	Equivalent Series Resistance	F = 1 MHz	-	1.3	-	Ω
SWITCHING	CHARACTERISTICS, V _{GS} = 10 V					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 18.5 \text{ A},$	-	34	_	ns
t _r	Rise Time	V_{GS} = 10 V, R_{G} = 4.7 Ω (Note 4)	-	26	-	ns
t _{d(off)}	Turn-Off Delay Time		-	81	-	ns
t _f	Fall Time		ı	5	-	ns
SOURCE-DR	AIN DIODE CHARACTERISTICS					
Is	Maximum Continuous Source-to-Drain Diode Forward Current		-	-	37	Α
I _{SM}	Maximum Pulsed Source-to-Drain Diode Forward Current		-	-	92	Α
V _{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 18.5 A	-	-	1.3	V
t _{rr}	Reverse-Recovery Time	V _{GS} = 0 V, I _{SD} = 18.5 A,	-	103	-	ns
Q _{rr}	Reverse-Recovery Charge	dl _F /dt = 100 A/μs	-	414	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

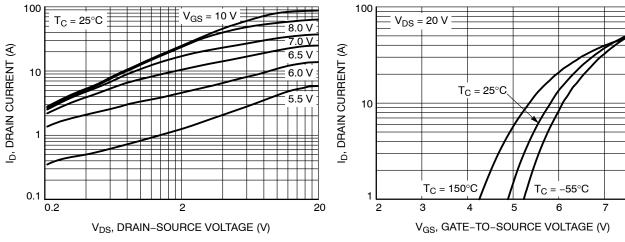


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

8

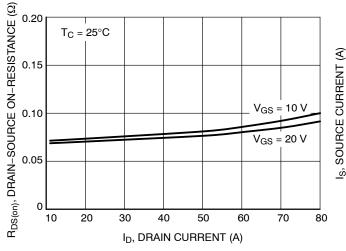


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

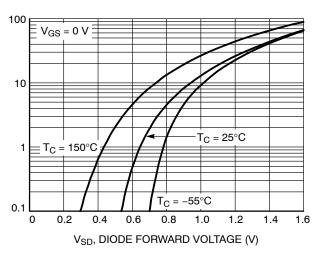


Figure 4. Diode Forward Voltage vs. Source Current

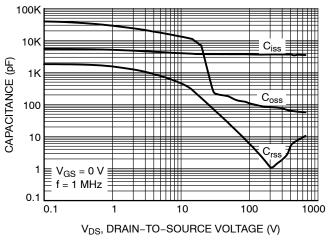


Figure 5. Capacitance Characteristics

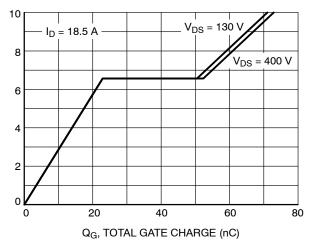


Figure 6. Gate Charge Characteristics

V_{GS}, GATE-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

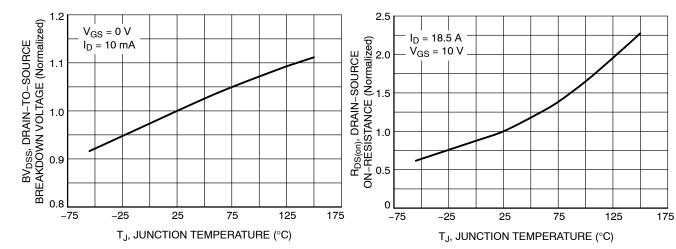


Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On–Resistance Variation vs.
Temperature

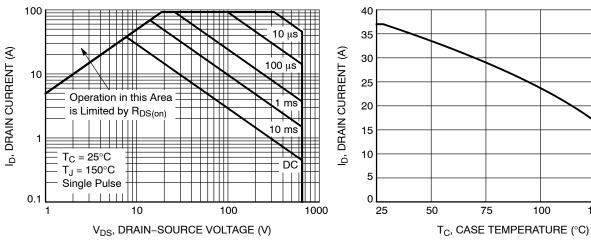


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

125

150

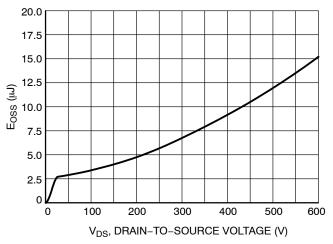


Figure 11. E_{OSS} vs. Drain-to-Source Voltage

TYPICAL CHARACTERISTICS

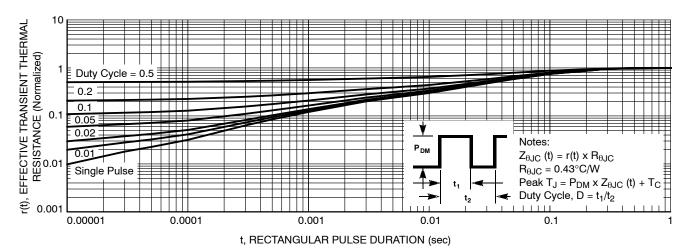


Figure 12. Transient Thermal Response

DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NVBG089N65S3F	D2PAK-7L	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

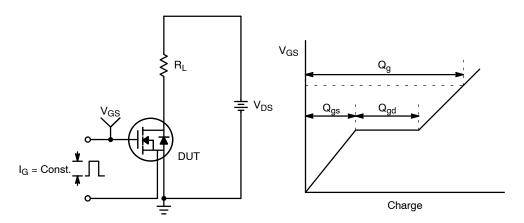


Figure 13. Gate Charge Test Circuit & Waveform

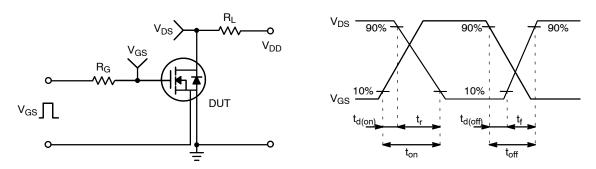


Figure 14. Resistive Switching Test Circuit & Waveforms

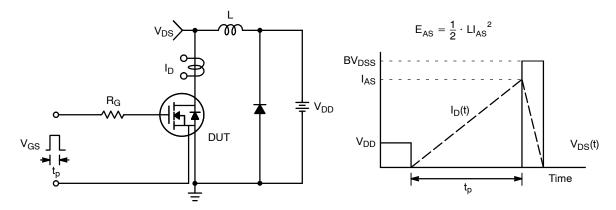
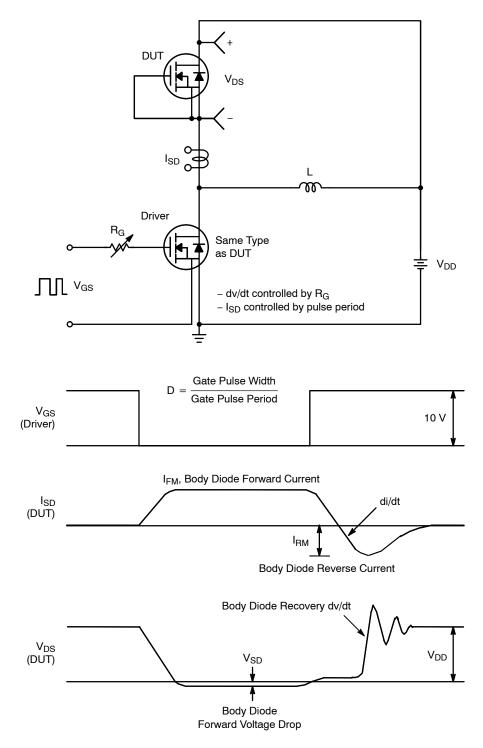
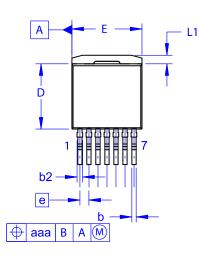
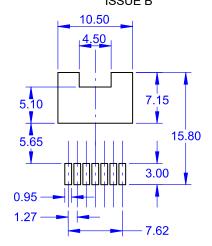
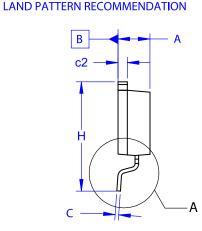


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

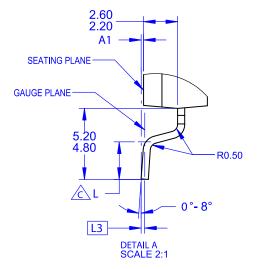

Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET and FRFET are registered trademarks of Semiconductor Components Industries, LLC.


PACKAGE DIMENSIONS

D²PAK7 (TO-263-7L HV) CASE 418BJ ISSUE B

- E1 🖚 D1 8 3.20 MIN



NOTES:

A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.

OUT OF JEDEC STANDARD VALUE.
D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.
E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

DIM	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	4.30	4.50	4.70	
A 1	0.00	0.10	0.20	
b2	0.60	0.70	0.80	
b	0.51	0.60	0.70	
С	0.40	0.50	0.60	
c2	1.20	1.30	1.40	
D	9.00	9.20	9.40	
D1	6.15	6.80	7.15	
Е	9.70	9.90	10.20	
E1	7.15	7.65	8.15	
е	~	1.27	~	
Н	15.10	15.40	15.70	
L	2.44	2.64	2.84	
L1	1.00	1.20	1.40	
L3	~	0.25	~	
aaa	~	~	0.25	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

IRFD120 JANTX2N5237 2SK2267(Q) BUK455-60A/B BUZ80 TK100A10N1,S4X(S MIC4420CM-TR VN1206L NDP4060 SI4482DY IRS2092STRPBF-EL IPS70R2K0CEAKMA1 SQM120N06-3M5L-GE3 TK31J60W,S1VQ(O TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG P85W28HP2F-7071 NTE2384 DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 IPS60R360PFD7SAKMA1 DMN2990UFB-7B SSM3K35CT,L3F IPLK60R1K0PFD7ATMA1 2N7002W-G MCAC30N06Y-TP IPWS65R035CFD7AXKSA1 MCQ7328-TP SSM3J143TU,LXHF DMN12M3UCA6-7 PJMF280N65E1_T0_00201 PJMF380N65E1_T0_00201 PJMF280N60E1_T0_00201