Power MOSFET

30 V, 76 A, Single N-Channel, DPAK/IPAK

Features

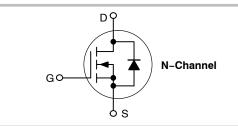
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- AEC-Q101 Qualified and PPAP Capable NVD4806N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

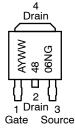
Param	eter		Symbol	Value	Unit
Drain-to-Source Voltag	je		V_{DSS}	30	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain		T _A = 25°C	I _D	15.6	Α
Current (R _{θJA}) (Note 1)		T _A = 85°C		12	
Power Dissipation $(R_{\theta JA})$ (Note 1)		T _A = 25°C	P _D	2.65	W
Continuous Drain		T _A = 25°C	I _D	11.3	Α
Current ($R_{\theta JA}$) (Note 2)	Steady	T _A = 85°C		8.8	
Power Dissipation $(R_{\theta JA})$ (Note 2)		T _A = 25°C	P _D	1.4	W
Continuous Drain		T _C = 25°C	I _D	79	Α
Current (R _{θJC}) (Note 1)		T _C = 85°C		61	
Power Dissipation (R _{θJC}) (Note 1)		T _C = 25°C	P _D	68	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	150	Α
Current Limited by Pack	age	T _A = 25°C	I _{DmaxPkg}	45	Α
Operating Junction and	Storage Te	emperature	T _J , T _{stg}	-55 to 175	°C
Source Current (Body Di	` , ,		IS	50	Α
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 24 V, V_{GS} = 10 V, L = 1.0 mH, $I_{L(pk)}$ = 21 A, R_G = 25 Ω)			E _{AS}	220	mJ
Lead Temperature for So (1/8" from case for 10 s)	Idering Pu	rposes	TL	260	°C

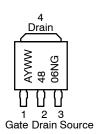

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	6.0 mΩ @ 10 V	76 A
30 V	9.4 mΩ @ 4.5 V	707




DPAK CASE 369AA (Bent Lead) STYLE 2

IPAK
CASE 369AD
(Straight Lead)
STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENTS

A = Assembly Location*

Y = Year

WW = Work Week

4806N = Device Code

G = Pb-Free Package

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	2.2	°C/W
Junction-to-Tab (Drain)	$R_{\theta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	56.7	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	106.8	

- 1. Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				-	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, I}_{D} = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				27		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS} = 24 V$	T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.5		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				6.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 to 11.5 V	I _D = 30 A		4.9	6.0	mΩ
			I _D = 15 A		4.8		1
		V _{GS} = 4.5 V	I _D = 30 A		7.9	9.4	1
			I _D = 15 A		7.5		1
Forward Transconductance	gFS	V _{DS} = 15 V, I _D	= 15 A		14		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}				2142		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1$ $V_{DS} = 12$			480		
Reverse Transfer Capacitance	C _{rss}	VDS - 12	ľ		251		
Total Gate Charge	Q _{G(TOT)}				15	23	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}, V_{D}$	_S = 15 V,		3.0		1
Gate-to-Source Charge	Q_{GS}	I _D = 30 <i>i</i>	A		7.0		
Gate-to-Drain Charge	Q_{GD}				7.0		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 11.5 V, V _E I _D = 30 A			37		nC
SWITCHING CHARACTERISTICS (Note	= 4)						
Turn-On Delay Time	t _{d(on)}				13.9		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _D	_S = 15 V,		29.7		
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 \text{ A}, R_G$			18.3		
Fall Time	t _f				7.8		1
	<u>. </u>	l .			1	1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

- 4. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Parameter	Symbol	Test Con	dition	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	(Note 4)						
Turn-On Delay Time	t _{d(on)}				8.5		ns
Rise Time	t _r	V _{GS} = 11.5 V, V _{DS} = 15 V,			23.8		
Turn-Off Delay Time	t _{d(off)}	I _D = 15 A, R	$_{ m G}$ = 3.0 Ω		26		
Fall Time	t _f				4.7		
DRAIN-SOURCE DIODE CHARA	CTERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$			0.9	1.2	V
			T _J = 125°C		0.8		
Reverse Recovery Time	t _{RR}		•		26		ns
Charge Time	ta	V _{GS} = 0 V, dls/d	lt= 100 A/μs,		13		
Discharge Time	tb	I _S = 30 A			13		
Reverse Recovery Time	Q_{RR}				16		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				2.49		nH
Drain Inductance, DPAK	L _D				0.0164		
Drain Inductance, IPAK	L _D	T _A = 25°C			1.88		
Gate Inductance	L _G				3.46		
Gate Resistance	R _G				1.0		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

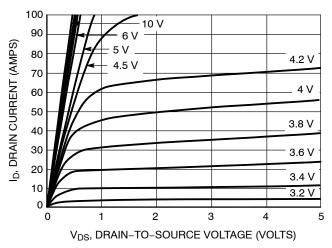


Figure 1. On-Region Characteristics

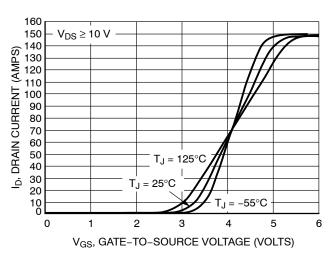


Figure 2. Transfer Characteristics

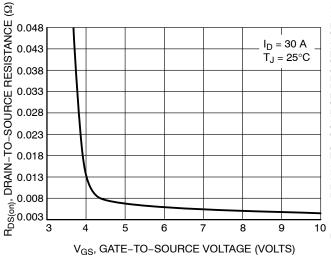


Figure 3. On-Resistance vs. Gate-to-Source Voltage

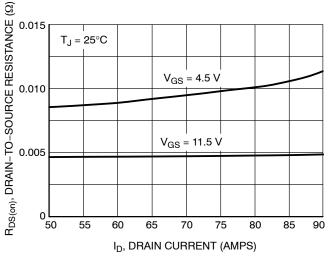


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

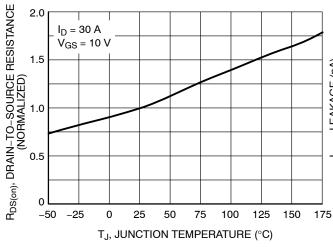


Figure 5. On–Resistance Variation with Temperature

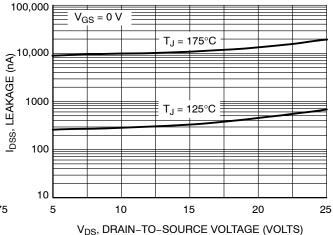
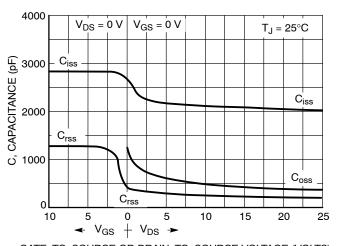



Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

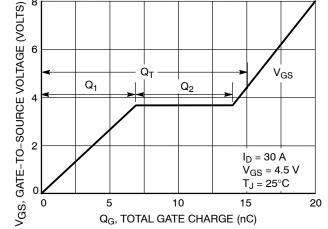


Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

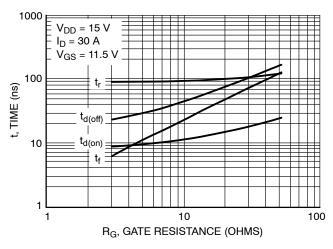


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

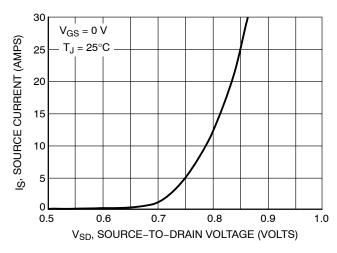


Figure 10. Diode Forward Voltage vs. Current

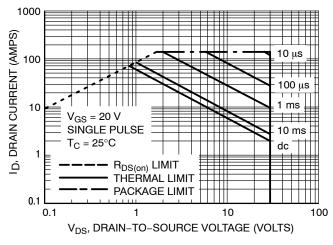


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL PERFORMANCE CURVES

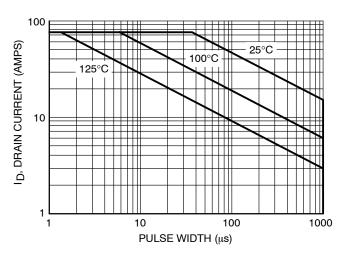


Figure 13. Avalanche Characteristics

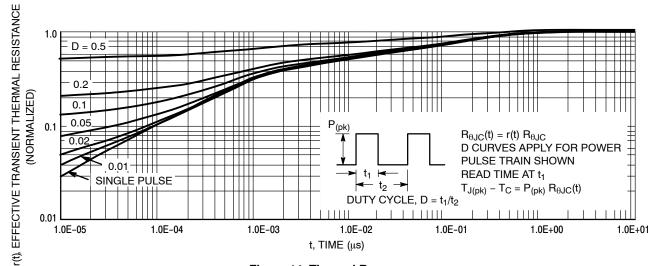
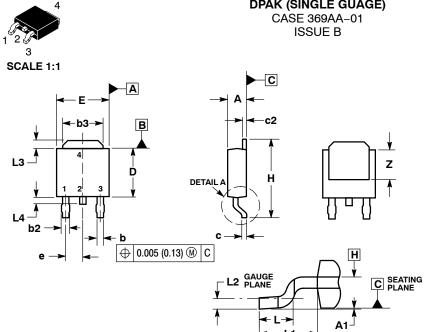
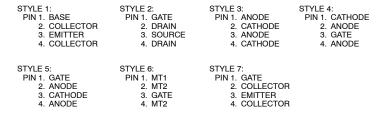



Figure 14. Thermal Response

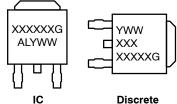
ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD4806NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD4806N-35G	IPAK Trimmed Lead (3.5 ± 0.15 mm) (Pb-Free)	75 Units / Rail
NVD4806NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NVD4806NT4G-VF01	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

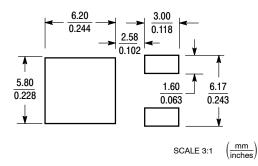


DETAIL A ROTATED 90° CW **DATE 03 JUN 2010**


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108 REF		2.74	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	


GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

SOLDERING FOOTPRINT*

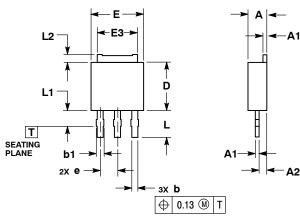
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

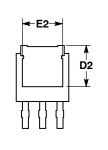
DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

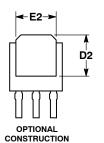
ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS




3.5 MM IPAK, STRAIGHT LEAD


CASE 369AD **ISSUE B**

DATE 18 APR 2013

STYLE 4: PIN 1. CATHODE

3. GATE

2. ANODE

ANODE

- NOTES:
 1.. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. 2.. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD GATE OR MOLD FLASH.

	MILLIMETERS				
DIM	MIN	MAX			
Α	2.19	2.38			
A1	0.46	0.60			
A2	0.87	1.10			
b	0.69	0.89			
b1	0.77	1.10			
D	5.97	6.22			
D2	4.80				
E	6.35	6.73			
E2	4.57	5.45			
E3	4.45	5.46			
е	2.28 BSC				
L	3.40	3.60			
L1		2.10			
L2	0.89	1.27			

GENERIC MARKING DIAGRAMS*

Integrated

STYL	Ε	1	:	
PIN	1			RA

4. STYLE 5:

PIN 1. GATE

ASE 2. COLLECTOR 3. **EMITTER**

ANODE
 CATHODE

ANODE

COLLECTOR

STYLE 2: PIN 1. GATE

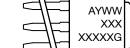
STYLE 6:

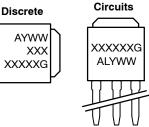
PIN 1. MT1

MT2
 GATE

MT2

2. DRAIN 3. SOURCE DRAIN


STYLE 3: PIN 1. ANODE 2. CATHODE


STYLE 7:

3. ANODE CATHODE

PIN 1. GATE 2. COLLECTOR 3. EMITTER

COLLECTOR

XXXXXX = Device Code

Α = Assembly Location

L = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON23319D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION	3.5 MM IPAK STRAIGHT I	FΔD	PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B