MOSFET – Power, Single, N-Channel, DPAK 40 V, 38 A

Features

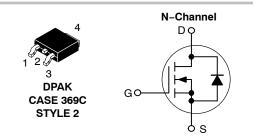
- Low R_{DS(on)}
- High Current Capability
- Low Gate Charge
- STD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Electronic Brake Systems
- Electronic Power Steering
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

$\begin{tabular}{ c c c } \hline Parameter \\ \hline \hline Drain-to-Source Voltage \\ \hline \hline Gate-to-Source Voltage \\ \hline \hline Gate-to-Source Voltage \\ \hline \hline Continuous Drain \\ Current - R_{\theta JC} \\ \hline \hline T_C = 25^\circ C \\ \hline \hline T_C = 100^\circ C \\ \hline \hline T_C = 25^\circ C \\ \hline \hline T_C = 25^\circ C \\ \hline T_C = 25^\circ C \\ \hline T_C = 25^\circ C \\ \hline \hline T_C = 25^\circ C \\ \hline T_C = 25^\bullet C \\ \hline T_C = 25^\circ C \\ \hline T_C = 25^\circ C \\ \hline T_C = 25^\bullet C \\ \hline T_C = 2$	Symbol V _{DSS} V _{GS} I _D P _D	Value 40 ±20 38 27 75	Unit V V A
$\begin{tabular}{ c c c c c } \hline Gate-to-Source Voltage & \hline & \\ \hline Continuous Drain \\ Current - R_{\theta JC} & \hline & \\ \hline Steady \\ State & \hline & \\ \hline T_C = 25^\circ C \\ \hline & \\ \hline T_C = 100^\circ C \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline \hline & \\ \hline \hline \hline & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline$	V _{GS} I _D	±20 38 27	V A
$ \begin{array}{c} \mbox{Continuous Drain} \\ \mbox{Current} - R_{\theta JC} \end{array} & \begin{array}{c} \mbox{Steady} \\ \mbox{State} \end{array} & \begin{array}{c} \mbox{T}_C = 25^\circ C \\ \hline \mbox{T}_C = 100^\circ C \\ \hline \mbox{Power Dissipation} - \\ \hline \mbox{R}_{\theta JC} \end{array} & \begin{array}{c} \mbox{Steady} \\ \mbox{State} \end{array} & \begin{array}{c} \mbox{T}_C = 25^\circ C \\ \hline \mbox{T}_C = 25^\circ C \\ \hline \mbox{C} \end{array} \\ \end{array} $	Ι _D	38 27	A
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		27	
State $T_C = 100^{\circ}C$ Power Dissipation -Steady $R_{\theta JC}$ $T_C = 25^{\circ}C$	P _D		
R _{0JC} State	P _D	75	
Continuous Drain Steady T ₄ = 25°C			W
	ID	7.6	А
Current $R_{\theta JA}$ (Note 1) State $T_A = 100^{\circ}C$		5.3	
$\begin{array}{c c} \mbox{Power Dissipation} - & \mbox{Steady} \\ \mbox{R}_{\theta JA} \mbox{ (Note 1)} & \mbox{State} \end{array} T_A = 25^{\circ} C$	P _D	2.9	W
Pulsed Drain Current $t_p = 10 \ \mu s$	I _{DM}	75	А
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to 175	°C
Source Current (Body Diode)	۱ _S	36	А
Single Pulse Drain-to Source Avalanche Energy – (V _{DD} = 50 V, V _{GS} = 10 V, I _{PK} = 17 A, L = 1 mH, R _G = 25 Ω)	EAS	150	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I <mark>D MAX</mark> (Note 1)		
40 V	21 mΩ @ 10 V	38 A		

MARKING DIAGRAM

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

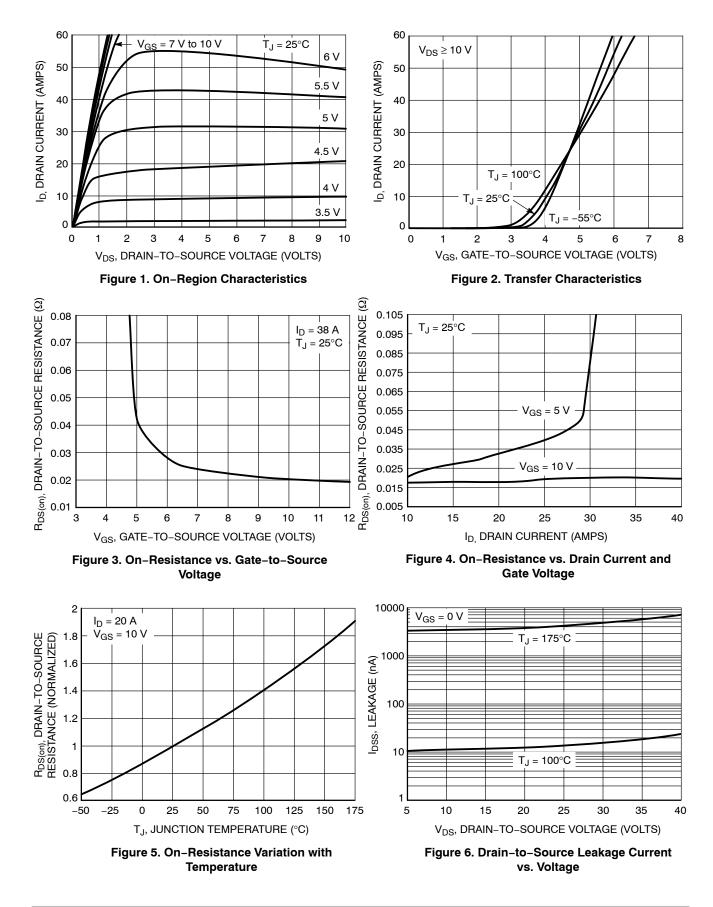
Device	Package	Shipping†		
NTD5407NT4G	DPAK (Pb–Free)	2500 / Tape & Reel		
STD5407NT4G*	DPAK (Pb–Free)	2500 / Tape & Reel		
NVD5407NT4G*	DPAK (Pb–Free)	2500 / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

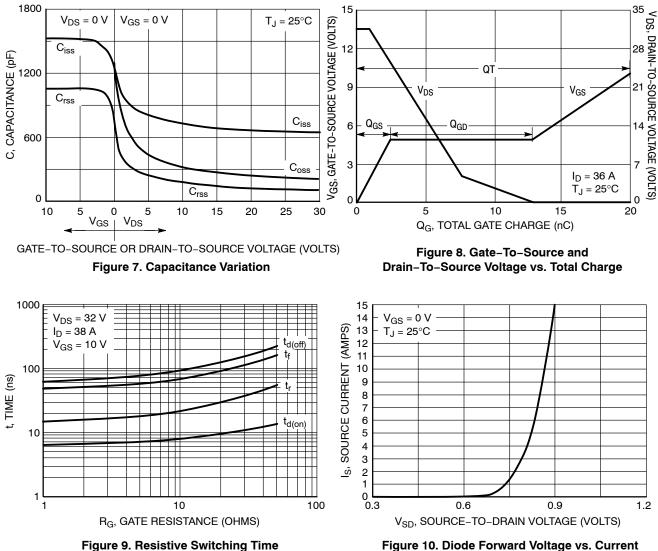
© Semiconductor Components Industries, LLC, 2014 June, 2019 – Rev. 7

THERMAL RESISTANCE RATINGS (Note 1)

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	2.0	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	52	°C/W

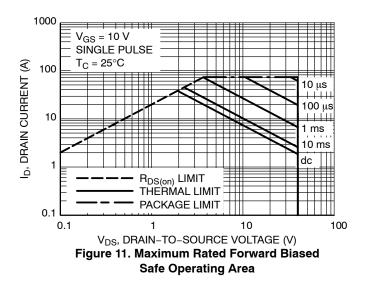

1. Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated)

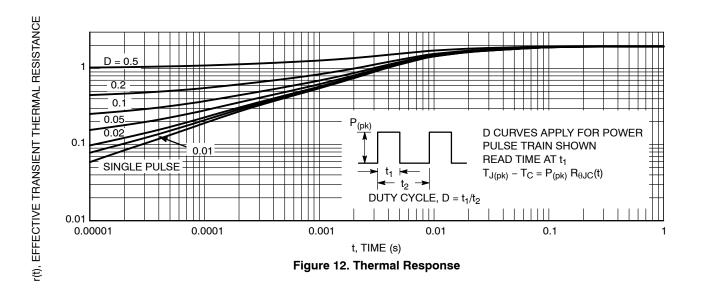

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			•		•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				39		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1.0	μA
		V _{DS} = 40 V	$T_J = 100^{\circ}C$			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±30 V				±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{E}$	o = 250 μA	1.5		3.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-6.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A			21	26	mΩ
		V _{GS} = 5.0 V,	l _D = 10 A		32	40	
Forward Transconductance	g fs	V _{GS} = 10 V,	I _D = 18 A		15		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				615	1000	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = V _{DS} = 3	1.0 MHz, 32 V		173		
Reverse Transfer Capacitance	C _{RSS}	• D3 = 4			80		
Total Gate Charge	Q _{G(TOT)}				20		nC
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 32 \text{ V},$ $I_D = 38 \text{ A}$			2.25		1
Gate-to-Drain Charge	Q _{GD}				10.5		1
SWITCHING CHARACTERISTICS, VG	is = 10 V (Note :	3)					
Turn-On Delay Time	t _{d(ON)}				6.8		ns
Rise Time	t _r	V _{GS} = 10 V, V	חח = 32 V,		17		
Turn-Off Delay Time	t _{d(OFF)}	V _{GS} = 10 V, V I _D = 38 A, R	_G = 2.5 Ω		66		
Fall Time	t _f				51		
SWITCHING CHARACTERISTICS, VG	is = 5 V (Note 3)	1					
Turn-On Delay Time	t _{d(ON)}				10		ns
Rise Time	t _r	V _{GS} = 5 V, V _[חר = 20 V,		175		
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 20 \text{ A}, R_{\rm G} = 2.5 \Omega$			13		1
Fall Time	t _f				23		
DRAIN-SOURCE DIODE CHARACTE	RISTICS (Note	2)					
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.9	1.1	V
		I _S = 5.0 Å	T _J = 125°C		0.75		
Reverse Recovery Time	t _{RR}				38		ns
Charge Time	t _a	V _{GS} = 0 V, dI _S /d	t = 100 A/μs,		20.5		1
Discharge Time	t _b	$I_{S} = 15 \text{ A}$			17		1
Reverse Recovery Charge	Q _{RR}				40		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 3. Switching characteristics are independent of operating junction temperatures.

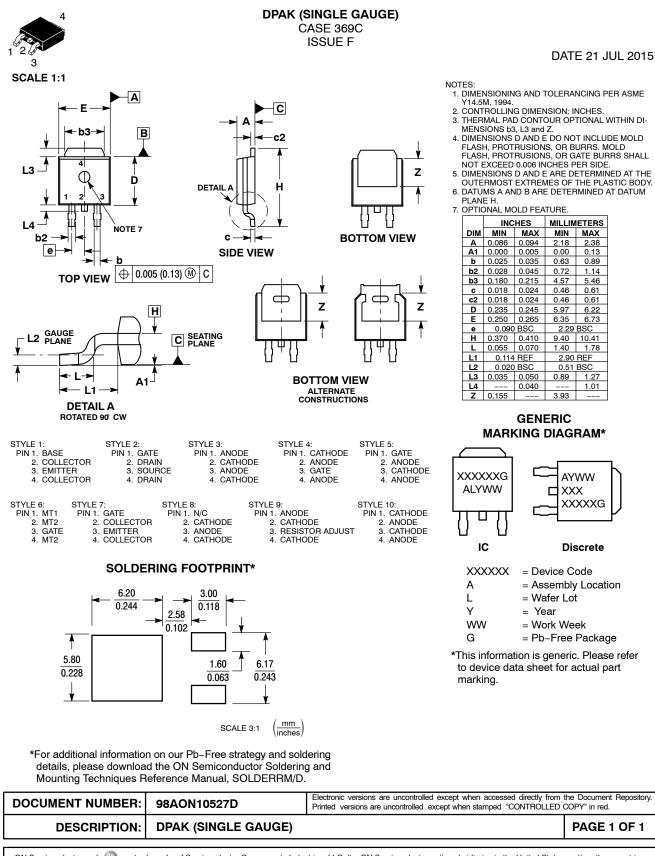
TYPICAL PERFORMANCE CURVES



TYPICAL PERFORMANCE CURVES



Variation vs. Gate Resistance


Figure 10. Diode Forward Voltage vs. Current

TYPICAL PERFORMANCE CURVES

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for the res.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B