# Automotive 750 V, 820 A Single Side Direct Cooling 6-Pack Power Module

# **VE-Trac™ Direct Module NVH820S75L4SPB**

### **Product Description**

The NVH820S75L4SPB is a power module from the VE-Trac™ Direct family of highly integrated power modules with industry standard footprints for Hybrid (HEV) and Electric Vehicle (EV) traction inverter application.

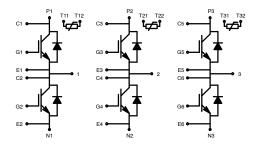
The module integrates six Field Stop 4 (FS4) 750 V Narrow Mesa IGBTs in a 6-pack configuration, which excels in providing high current density, while offering robust short circuit protection and increased blocking voltage. Additionally, FS4 750 V Narrow Mesa IGBTs show low power losses during lighter loads, which helps to improve overall system efficiency in automotive applications.


For assembly ease and reliability, a new generation of press-fit pins are integrated into the power module signal terminals. In addition, the power module has an optimized pin-fin heatsink in the baseplate.

#### **Features**

- Direct Cooling w/ Integrated Pin-fin Heatsink
- Ultra-low Stray Inductance
- $T_{vjmax} = 175$ °C Continuous Operation
- Low V<sub>CESAT</sub> and Switching Losses
- Automotive Grade FS4 750 V Narrow Mesa IGBT
- Fast Recovery Diode Chip Technologies
- 4.2 kV Isolated DBC Substrate
- Easy to Integrate 6-pack Topology
- This Device is Pb-Free and is RoHS Compliant

#### **Typical Applications**


- Hybrid and Electric Vehicle Traction Inverter
- High Power Converters



SSDC33, 154.50x92.0 (SPB) CASE 183AB

#### **MARKING DIAGRAM**

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YYWW= Year and Work Week Code



### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 5 of this data sheet

1

### **Pin Description**

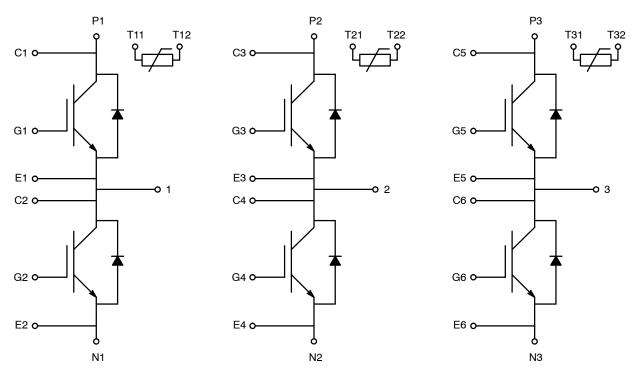



Figure 1. Pin Description

### PIN FUNCTION DESCRIPTION

| Pin #      | Pin Function Description          |
|------------|-----------------------------------|
| P1, P2, P3 | Positive Power Terminals          |
| N1, N2, N3 | Negative Power Terminals          |
| 1          | Phase 1 Output                    |
| 2          | Phase 2 Output                    |
| 3          | Phase 3 Output                    |
| G1-G6      | IGBT Gate                         |
| E1-E6      | IGBT Gate Return                  |
| C1-C6      | Desat Detect/Collector Sense      |
| T11, T12   | Phase 1 Temperature Sensor Output |
| T21, T22   | Phase 2 Temperature Sensor Output |
| T31, T32   | Phase 3 Temperature Sensor Output |

### Materials

DBC Substrate: Al<sub>2</sub>O<sub>3</sub> isolated substrate, basic isolation,

and copper on both sides

Terminals: Copper + Tin electro-plating Signal Leads: Copper + Tin plating Pin-fin Base plate: Copper + Ni plating

### Flammability Information

The module frame meets UL94V-0 flammability rating.

# **MODULE CHARACTERISTICS** ( $T_{vj} = 25^{\circ}C$ , Unless Otherwise Specified)

| Symbol             | Parameter                                            | Rating     | Unit |
|--------------------|------------------------------------------------------|------------|------|
| T <sub>vj</sub>    | Operating Junction Temperature                       | -40 to 175 | °C   |
| T <sub>STG</sub>   | Storage Temperature                                  | -40 to 125 | °C   |
| V <sub>ISO</sub>   | Isolation Voltage (DC, 0 Hz, 1 s)                    | 4200       | V    |
| L <sub>sCE</sub>   | Stray Inductance                                     | 8          | nH   |
| RCC'+EE'           | Module Lead Resistance, Terminals - Chip             | 0.75       | mΩ   |
| G                  | Module Weight                                        | 700        | g    |
| CTI                | Comparative Tracking Index                           | >200       | -    |
| d <sub>creep</sub> | Creepage: Terminal to Heatsink Terminal to Terminal  | 9.0<br>9.0 | mm   |
| d <sub>clear</sub> | Clearance: Terminal to Heatsink Terminal to Terminal | 4.5<br>4.5 | mm   |

| Symbol     | Parameters                                  | Conditions                                                     | Min | Тур | Max        | Unit |
|------------|---------------------------------------------|----------------------------------------------------------------|-----|-----|------------|------|
| Δр         | Pressure Drop in Cooling Circuit            | 10 L/min, 65°C, 50/50 EGW                                      | ı   | 95  | ı          | mbar |
| P (Note 1) | Maximum Pressure in Cooling Loop (relative) | T <sub>Baseplate</sub> < 40°C<br>T <sub>Baseplate</sub> > 40°C |     | - 1 | 2.5<br>2.0 | bar  |

<sup>1.</sup> EPDM rubber 50 durometer 'O' ring used.

# **ABSOLUTE MAXIMUM RATINGS** ( $T_{vj}$ = 25°C, Unless Otherwise Specified)

| Symbol                 | Parameter                                                                                      | Rating         | Unit             |
|------------------------|------------------------------------------------------------------------------------------------|----------------|------------------|
| BT                     |                                                                                                |                |                  |
| V <sub>CES</sub>       | Collector to Emitter Voltage                                                                   | 750            | V                |
| $V_{GES}$              | Gate to Emitter Voltage                                                                        | ±20            | V                |
| I <sub>CN</sub>        | Implemented Collector Current                                                                  | 820            | Α                |
| I <sub>C nom</sub>     | Continuous DC Collector Current, T <sub>vj</sub> = 175°C, T <sub>F</sub> = 65°C, Ref. Heatsink | 600 (Note 2)   | Α                |
| I <sub>CRM</sub>       | Pulsed Collector Current @ V <sub>GE</sub> = 15 V, t <sub>p</sub> =1 ms                        | 1640           | Α                |
| P <sub>tot</sub>       | Total Power Dissipation T <sub>vj</sub> = 175°C, T <sub>F</sub> = 65°C, Ref. Heatsink          | 1000           | W                |
| ode                    |                                                                                                |                |                  |
| $V_{RRM}$              | Repetitive Peak Reverse Voltage                                                                | 750            | V                |
| I <sub>FN</sub>        | Implemented Forward Current                                                                    | 820            | Α                |
| l <sub>F</sub>         | Continuous Forward Current, T <sub>vj</sub> = 175°C, T <sub>F</sub> = 65°C, Ref. Heatsink      | 400 (Note 2)   | Α                |
| I <sub>FRM</sub>       | Repetitive Peak Forward Current, t <sub>p</sub> = 1 ms                                         | 1640           | Α                |
| I <sup>2</sup> t value | Surge Current Capability, $t_p$ = 10 ms, $T_{vj}$ = 150°C $T_{vj}$ = 175°C                     | 19000<br>16000 | A <sup>2</sup> s |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Verified by characterization/design, not by test.

# **CHARACTERISTICS OF IGBT** ( $T_{vj} = 25^{\circ}C$ , Unless Otherwise Specified)

| Symbol             | Parameters                                                           | Condition                                                                                                                                              | ıs                                                                                                                                                                      | Min         | Тур                  | Max            | Unit     |
|--------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|----------------|----------|
| V <sub>CESAT</sub> | Collector to Emitter Saturation<br>Voltage (Terminal)                | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 600 A                                                                                                         | T <sub>vj</sub> = 25°C                                                                                                                                                  | _           | 1.30                 | 1.55           | V        |
|                    | Collector to Emitter Saturation<br>Voltage (Chip)                    | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 600 A                                                                                                         | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                            | -<br>-<br>- | 1.25<br>1.37<br>1.40 | 1.50<br>-<br>- |          |
|                    |                                                                      | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 820 A                                                                                                         | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                            | -<br>-<br>- | 1.40<br>1.59<br>1.63 | -<br>-<br>-    |          |
| I <sub>CES</sub>   | Collector to Emitter Leakage<br>Current                              | V <sub>GE</sub> = 0, V <sub>CE</sub> = 750 V                                                                                                           | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$                                                                                                                       | _<br>_      | _<br>2.0             | 500<br>-       | μA<br>mA |
| I <sub>GES</sub>   | Gate – Emitter Leakage<br>Current                                    | V <sub>CE</sub> = 0, V <sub>GE</sub> = ±20 V                                                                                                           | •                                                                                                                                                                       | -           | _                    | 300            | nA       |
| V <sub>th</sub>    | Threshold Voltage                                                    | $V_{CE} = V_{GE}$ , $I_C = 90 \text{ mA}$                                                                                                              |                                                                                                                                                                         | 4.8         | 5.7                  | 6.6            | ٧        |
| $Q_{G}$            | Total Gate Charge                                                    | $V_{GE=}$ -8 to 15 V, $V_{CE}$ = 400                                                                                                                   | V                                                                                                                                                                       | -           | 2.3                  | -              | μС       |
| R <sub>Gint</sub>  | Internal Gate Resistance                                             |                                                                                                                                                        |                                                                                                                                                                         | -           | 1.7                  | -              | Ω        |
| C <sub>ies</sub>   | Input Capacitance                                                    | $V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 0$                                                                                                   | 100 kHz                                                                                                                                                                 | -           | 60                   | =              | nF       |
| C <sub>oes</sub>   | Output Capacitance                                                   | $V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 0$                                                                                                   | 100 kHz                                                                                                                                                                 | -           | 1.90                 | =              | nF       |
| C <sub>res</sub>   | Reverse Transfer<br>Capacitance                                      | V <sub>CE</sub> = 30 V, V <sub>GE</sub> = 0 V, f = <sup>-1</sup>                                                                                       | 100 kHz                                                                                                                                                                 | _           | 0.2                  | -              | nF       |
| T <sub>d.on</sub>  | Turn On Delay, Inductive<br>Load                                     | $I_{C} = 600 \text{ A}, V_{CE} = 400 \text{ V},$<br>$V_{GE} = +15/-8 \text{ V},$<br>$R_{g.on} = 4 \Omega$                                              | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                            | -<br>-<br>- | 315<br>320<br>322    | -<br>-<br>-    | ns       |
| T <sub>r</sub>     | Rise Time, Inductive Load                                            | $I_{C} = 600 \text{ A}, V_{CE} = 400 \text{ V},$<br>$V_{GE} = +15/-8 \text{ V},$<br>$R_{g.on} = 4 \Omega$                                              | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                            | -<br>-<br>- | 108<br>127<br>132    | -<br>-<br>-    | ns       |
| $T_{d.off}$        | Turn Off Delay, Inductive<br>Load                                    | $I_{C} = 600 \text{ A}, V_{CE} = 400 \text{ V},$<br>$V_{GE} = +15/-8 \text{ V},$<br>$R_{g.off} = 12 \Omega$                                            | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                            | -<br>-<br>- | 1063<br>1196<br>1203 | -<br>-<br>-    | ns       |
| T <sub>f</sub>     | Fall Time, Inductive Load                                            | $I_C$ = 600 A, $V_{CE}$ = 400 V, $V_{GE}$ = +15/-8 V, $R_{g.off}$ = 12 $\Omega$                                                                        | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                            | -<br>-<br>- | 85<br>144<br>151     | -<br>-<br>-    | ns       |
| E <sub>on</sub>    | Turn-On Switching Loss<br>(Including Diode Reverse<br>Recovery Loss) | $\begin{split} &I_{C} = 600 \text{ A, V}_{CE} = 400 \text{ V,} \\ &V_{GE} = +15/-8 \text{ V,} \\ &Ls = 22 \text{ nH, R}_{g.on} = 4 \Omega \end{split}$ | $\begin{aligned} &\text{di/dt} = 4.5 \text{ A/ns}, \\ &T_{vj} = 25^{\circ}\text{C} \\ &\text{di/dt} = 3.9 \text{ A/ns}, \\ &T_{vj} = 150^{\circ}\text{C} \end{aligned}$ | -           | 26<br>36             | -              | mJ       |
|                    |                                                                      |                                                                                                                                                        | di/dt = 3.6 A/ns,<br>T <sub>vj</sub> = 175°C                                                                                                                            | _           | 38                   | -              |          |
| E <sub>off</sub>   | Turn-Off Switching Loss                                              | $I_C = 600 \text{ A}, V_{CE} = 400 \text{ V},$<br>$V_{GE} = +15/-8 \text{ V},$                                                                         | dv/dt = 2.7  V/ns,<br>$T_{vj} = 25^{\circ}\text{C}$                                                                                                                     | _           | 33                   | _              | mJ       |
|                    |                                                                      | Ls = 22 nH, $R_{g.off}$ = 12 $\Omega$                                                                                                                  | dv/dt = 1.9  V/ns,<br>$T_{vj} = 150^{\circ}\text{C}$                                                                                                                    | _           | 46                   | _              |          |
|                    |                                                                      |                                                                                                                                                        | $dv/dt = 1.9 \text{ V/ns},$ $T_{vj} = 175^{\circ}\text{C}$                                                                                                              | -           | 50                   | -              |          |
| E <sub>SC</sub>    | Minimum Short Circuit Energy<br>Withstand                            | V <sub>GE</sub> = 15 V, V <sub>CC</sub> = 400 V                                                                                                        | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                                                       | 9<br>4.5    | _<br>_               | -<br>-         | J        |

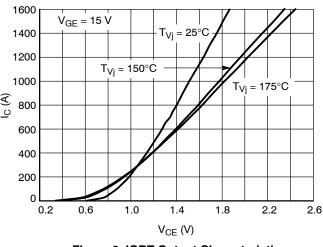
# $\textbf{CHARACTERISTICS OF INVERSE DIODE} \ (T_{vj} = 25^{\circ}\text{C}, \ \text{Unless Otherwise Specified})$

| Symbol          | Parameters                          | Condition                                                                    | s                                                                                                                                                                                     | Min         | Тур                  | Max            | Unit |
|-----------------|-------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|----------------|------|
| V <sub>F</sub>  | Diode Forward Voltage<br>(Terminal) | I <sub>F</sub> = 600 A                                                       | T <sub>vj</sub> = 25°C                                                                                                                                                                | ı           | 1.70                 | 1.95           | V    |
|                 | Diode Forward Voltage (Chip)        | I <sub>F</sub> = 600 A                                                       | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                                          |             | 1.60<br>1.55<br>1.50 | 1.85<br>-<br>- |      |
|                 |                                     | I <sub>F</sub> = 820 A                                                       | $T_{vj} = 25^{\circ}C$<br>$T_{vj} = 150^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                                                                                          | -<br>-<br>- | 1.70<br>1.70<br>1.65 | -<br>-<br>-    |      |
| E <sub>rr</sub> | Reverse Recovery Energy             | $I_F$ = 600 A, $V_R$ = 400 V,<br>$V_{GE}$ = -8 V,<br>$R_{g.on}$ = 4 $\Omega$ | $\begin{aligned} &\text{di/dt} = 4.5 \text{ A/ns}, \\ &\text{T}_{vj} = 25^{\circ}\text{C} \\ &\text{di/dt} = 3.9 \text{ A/ns}, \\ &\text{T}_{vj} = 150^{\circ}\text{C} \end{aligned}$ | -           | 3<br>9               | -              | mJ   |
|                 |                                     |                                                                              | di/dt = 3.6 A/ns,<br>T <sub>vj</sub> = 175°C                                                                                                                                          | -           | 11                   | -              |      |
| Q <sub>rr</sub> | Recovered Charge                    | I <sub>F</sub> = 600 A, V <sub>R</sub> = 400 V,<br>V <sub>GE</sub> = -8 V,   | $\begin{array}{l} \text{di/dt} = 4.5 \text{ A/ns}, \\ \text{T}_{\text{vj}} = 25^{\circ}\text{C} \end{array}$                                                                          | _           | 9                    | -              | μC   |
|                 |                                     | $R_{g.on}$ = 4 $\Omega$                                                      | $\begin{aligned} &\text{di/dt} = 3.9 \text{ A/ns}, \\ &T_{vj} = 150^{\circ}\text{C} \\ &\text{di/dt} = 3.6 \text{ A/ns}, \\ &T_{vj} = 175^{\circ}\text{C} \end{aligned}$              | -           | 32<br>39             | -              |      |
| I <sub>rr</sub> | Peak Reverse Recovery<br>Current    | I <sub>F</sub> = 600 A, V <sub>R</sub> = 400 V,<br>V <sub>GE</sub> = -8 V,   | di/dt = 4.5 A/ns,<br>T <sub>vj</sub> = 25°C                                                                                                                                           | -           | 133                  | -              | Α    |
|                 |                                     | $R_{g.on} = 4 \Omega$                                                        | di/dt = 3.9 A/ns,<br>$T_{vj}$ = 150°C<br>di/dt = 3.6 A/ns,<br>$T_{vj}$ = 175°C                                                                                                        | -           | 246<br>282           | -              |      |

# NTC SENSOR CHARACTERISTICS ( $T_{vj}$ = 25°C, Unless Otherwise Specified)

| Symbol                      | Parameters        | Conditions                                                             | Min | Тур  | Max | Unit |
|-----------------------------|-------------------|------------------------------------------------------------------------|-----|------|-----|------|
| R <sub>25</sub><br>(Note 3) | Rated Resistance  | T <sub>C</sub> = 25°C                                                  | _   | 5    | -   | kΩ   |
| ΔR/R                        | Deviation of R100 | $T_{C}$ = 100°C, $R_{100}$ = 493 $\Omega$                              | 5   | _    | 5   | %    |
| P <sub>25</sub>             | Power Dissipation | T <sub>C</sub> = 25°C                                                  | -   | _    | 20  | mW   |
| B <sub>25/50</sub>          | B-Value           | $R = R_{25} \exp \left[ B_{25/50} \left( 1/T - 1/298 \right) \right]$  | -   | 3375 | _   | K    |
| B <sub>25/80</sub>          | B-Value           | $R = R_{25} \exp \left[ B_{25/80} \left( 1/T - 1/298 \right) \right]$  | -   | 3411 | -   | K    |
| B <sub>25/100</sub>         | B-Value           | $R = R_{25} \exp \left[ B_{25/100} \left( 1/T - 1/298 \right) \right]$ | _   | 3433 | _   | K    |

### THERMAL CHARACTERISTICS

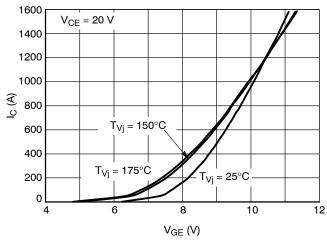

| Symbol                    | Parameter                                         | Min | Тур   | Max  | Unit |
|---------------------------|---------------------------------------------------|-----|-------|------|------|
| IGBT.R <sub>th,J-F</sub>  | Rth, Junction to Fluid, 10 L/min, 65°C, 50/50 EGW | ı   | 0.11  | 0.13 | °C/W |
| Diode.R <sub>th,J-F</sub> | Rth, Junction to Fluid, 10 L/min, 65°C, 50/50 EGW | -   | 0.185 | 0.20 | °C/W |

### ORDERING INFORMATION

| Part Number    | Package                                | Shipping       |
|----------------|----------------------------------------|----------------|
| NVH820S75L4SPB | SSDC33, 154.50x92.0 (SPB)<br>(Pb-Free) | 4 Units / Tray |

### **TYPICAL CHARACTERISTICS**

1600




400 200

 $V_{GE} = 17 V$  $V_{GE}$  = 11 V1400  $V_{GE} = 15 V$ 1200  $V_{GE} = 13 V$ 1000 800  $V_{GE} = 9 V$ 600  $T_{Vj} = 150^{\circ}C$ 2 0 V<sub>CE</sub> (V)

Figure 2. IGBT Output Characteristic

Figure 3. IGBT Output Characteristic



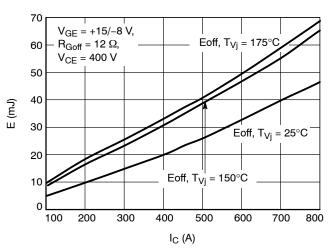
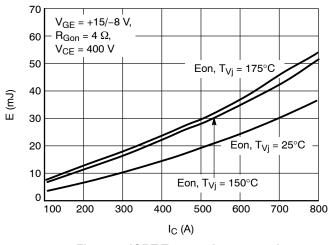




Figure 4. IGBT Transfer Characteristic

Figure 5. IGBT Turn-off Losses vs. I<sub>C</sub>



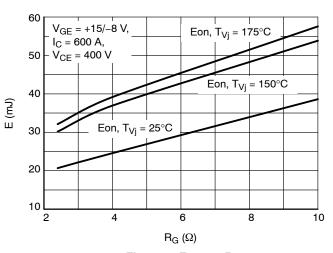



Figure 6. IGBT Turn-on Losses vs. I<sub>C</sub>

Figure 7. E<sub>ON</sub> vs. R<sub>G</sub>

#### **TYPICAL CHARACTERISTICS**

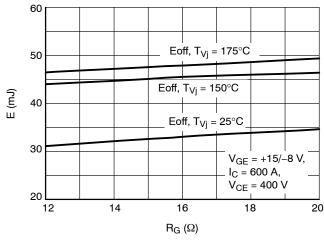
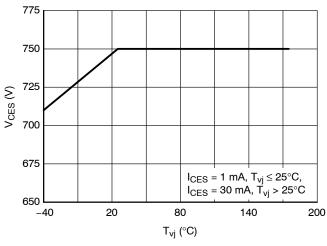




Figure 8. E<sub>OFF</sub> vs. R<sub>G</sub>

Figure 9. Gate Charge Characteristic



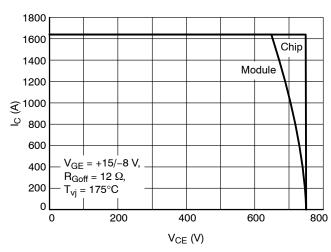
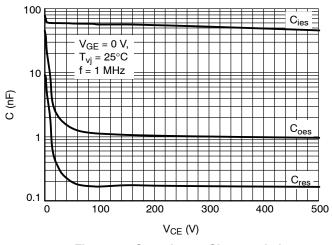




Figure 10. Maximum Allowed V<sub>CE</sub>

Figure 11. Reverse Bias Safe Operating Area



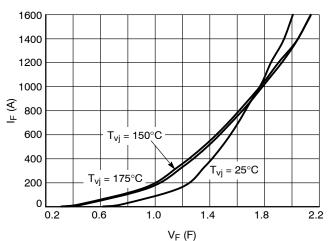
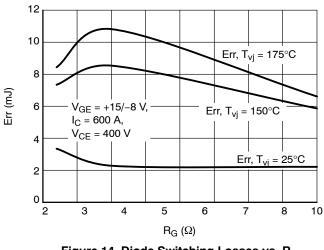
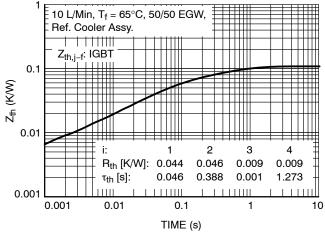




Figure 12. Capacitance Characteristic

Figure 13. Diode Forward Characteristic


### **TYPICAL CHARACTERISTICS**



14  $R_{Gon} = 4 \Omega$ Err,  $T_{vj} = 175^{\circ}C$ V<sub>CE</sub> = 400 V 12 10 Err,  $T_{vj} = 150^{\circ}C$ Err (mJ) 8 6 Err, T<sub>vi</sub> = 25°C 100 200 300 400 500 600 700 800  $I_F(A)$ 

Figure 14. Diode Switching Losses vs. R<sub>G</sub>

Figure 15. Diode Switching Losses vs. IF



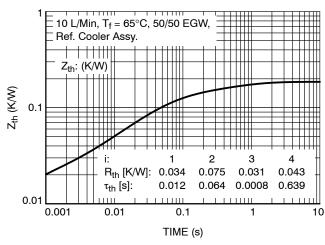
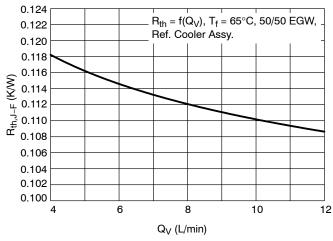




Figure 16. IGBT Transient Thermal Impedance (Typ.)

Figure 17. Diode Transient Thermal Impedance (Typ.)



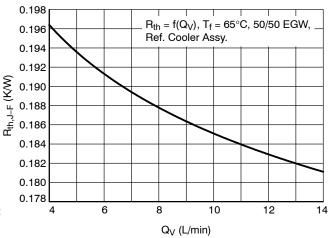
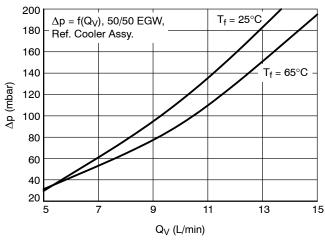
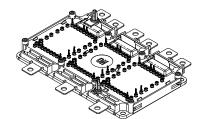




Figure 18. IGBT, Thermal Resistance (Typ.)

Figure 19. Diode, Thermal Resistance (Typ.)


### **TYPICAL CHARACTERISTICS**



100K 10K 10K 100 0 25 50 75 100 125 T<sub>C</sub> (°C)

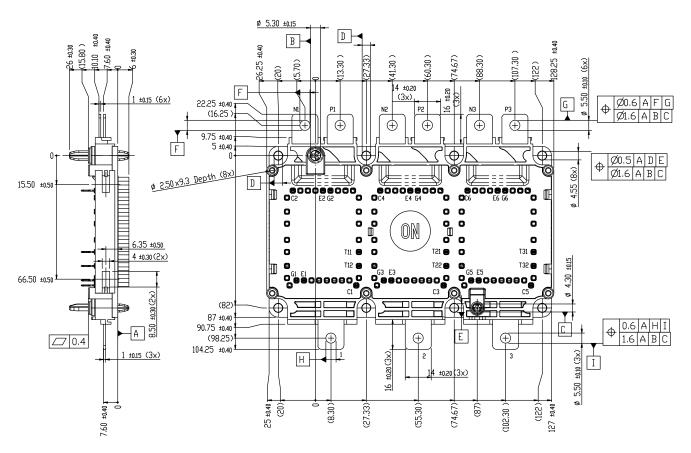

Figure 20. Pressure Drop in Cooling Circuit

Figure 21. NTC Thermistor – Temperature Characteristic (Typical)



#### SSDC33, 154.50x92.0 (SPB) CASE 183AB ISSUE A

**DATE 05 DEC 2019** 



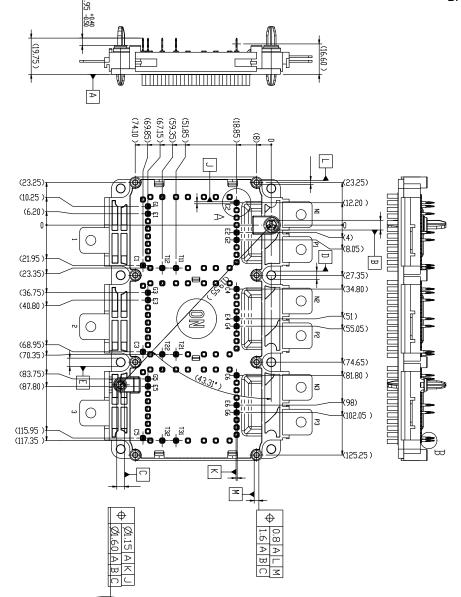
# GENERIC MARKING DIAGRAM\*

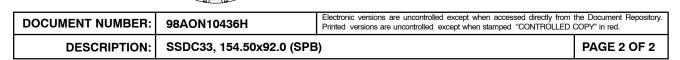
XXXXX = Specific Device Code

G = Pb-Free Package

AT = Assembly & Test Site Code

YYWW= Year and Work Week Code


\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.


| DOCUMENT NUMBER: | 98AON10436H              | Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:     | SSDC33, 154.50x92.0 (SPE | 3)                                                                                                                                                                             | PAGE 1 OF 2 |  |  |  |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

### SSDC33, 154.50x92.0 (SPB) CASE 183AB ISSUE A

**DATE 05 DEC 2019** 





ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

F3L400R07ME4\_B22 F4-50R07W2H3\_B51 FB15R06W1E3 FB20R06W1E3\_B11 FD1000R33HE3-K FD400R12KE3 FD400R33KF2C-K FD401R17KF6C\_B2 FD-DF80R12W1H3\_B52 FF200R06YE3 FF300R12KE4\_E FF450R12ME4P FF600R12IP4V FP20R06W1E3 FP50R12KT3 FP75R07N2E4\_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS200R12KT4R FS50R07N2E4\_B11 FZ1000R33HE3 FZ1800R17KF4 DD250S65K3 DF1000R17IE4 DF1000R17IE4D\_B2 DF1400R12IP4D DF200R12PT4\_B6 DF400R07PE4R\_B6 BSM75GB120DN2\_E3223c-Se F3L300R12ME4\_B22 F3L75R07W2E3\_B11 F4-50R12KS4\_B11 F475R07W1H3B11ABOMA1 FD1400R12IP4D FD200R12PT4\_B6 FD800R33KF2C-K FF1200R17KP4\_B2 FF150R12ME3G FF300R17KE3\_S4 FF300R17ME4\_B11 FF401R17KF6C\_B2 FF650R17IE4D\_B2 FF900R12IP4D FF900R12IP4DV STGIF7CH60TS-L FP50R07N2E4\_B11 FS100R07PE4 FS150R07N3E4\_B11 FS150R17N3E4