MOSFET - Power, N-Channel, SUPERFET® III, FRFET®

650 V, **75** A, **27.4** m Ω

NVHL027N65S3F

Description

SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate.

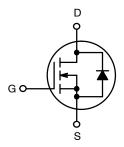
Consequently, SUPERFET III MOSFET is very suitable for the various power system for miniaturization and higher efficiency.

SUPERFET III FRFET MOSFET's optimized reverse recovery performance of body diode can remove additional component and improve system reliability.

Features

- 700 V @ $T_J = 150$ °C
- Typ. $R_{DS(on)} = 21.5 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 227 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 1880 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable

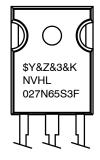
Applications


- Automotive On Board Charger HEV-EV
- Automotive DC/DC Converter for HEV-EV

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} MAX	I _D MAX	
650 V	27.4 mΩ @ 10 V	75 A	



POWER MOSFET

TO-247 LONG LEADS CASE 340CX

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

NVHL027N65S3F = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol	Parameter		NVHL027N65S3F	Unit	
V_{DSS}	Drain to Source Voltage		650	V	
V_{GSS}	Gate to Source Voltage	- DC	±30	V	
		- AC (f > 1 Hz)	±30		
I _D	Drain Current	– Continuous (T _C = 25°C)	75	Α	
		- Continuous (T _C = 100°C)	60		
I _{DM}	Drain Current	- Pulsed (Note 1)	187.5	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1610	mJ	
I _{AS}	Avalanche Current (Note 2)		15	Α	
E _{AR}	Repetitive Avalanche Energy (Note 1)		5.95	mJ	
dv/dt	MOSFET dv/dt		100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)	50			
P_{D}	Power Dissipation	(T _C = 25°C)	595	W	
		- Derate Above 25°C	4.76	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T_L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds		300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse–width limited by maximum junction temperature. 2. $I_{AS} = 15 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$. 3. $I_{SD} \le 37.5 \text{ A}$, di/dt $\le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	NVHL027N65S3F	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	0.21	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	

PACKAGE MARKING AND ORDERING INFORMATION

I	Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
	NVHL027N65S3F	NVHL027N65S3F	TO-247	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACT	ERISTICS			•		
BV _{DSS}	Drain to Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA, T _J = 25°C	650	_	_	V
		V _{GS} = 0 V, I _D = 10 mA, T _J = 150°C	700	_	_	V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 20 mA, Referenced to 25°C	-	0.61	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V	-	-	10	μΑ
		V _{DS} = 520 V, T _C = 125°C	-	590	_	
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA
ON CHARACTE	RISTICS	•				
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 3 \text{ mA}$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 35 A	-	21.5	27.4	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 37.5 A	-	57	-	S
DYNAMIC CHAI	RACTERISTICS			•		
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz	_	7780	_	pF
C _{oss}	Output Capacitance		-	200	-	pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	-	1880	_	pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	_	347	_	pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 37.5 A, V _{GS} = 10 V (Note 4)	-	227	_	nC
Q _{gs}	Gate to Source Gate Charge		-	67	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	87	_	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	2.2	_	Ω
WITCHING CH	ARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 37.5 \text{ A}, V_{GS} = 10 \text{ V}$	-	46	_	ns
t _r	Turn-On Rise Time	$R_g = 2 \Omega$ (Note 4)	-	59	_	ns
t _{d(off)}	Turn-Off Delay Time		-	147	_	ns
t _f	Turn-Off Fall Time		-	42	_	ns
SOURCE-DRAII	N DIODE CHARACTERISTICS	•				
I _S	Maximum Continuous Source to Drain Diode Forward Current		-	_	75	Α
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current		-	-	187.5	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 37.5 A	-	_	1.3	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 37.5 A,	-	179	_	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	-	1098	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. On-Region Characteristics

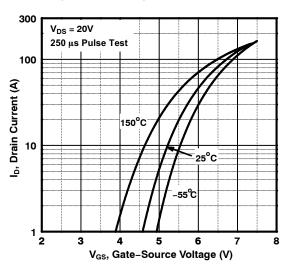


Figure 3. Transfer Characteristics

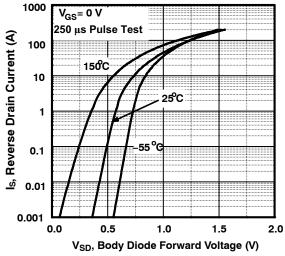


Figure 5. Body Diode Forward Voltage Variation vs. Source Current and Temperature

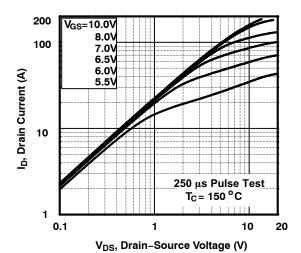


Figure 2. On-Region Characteristics

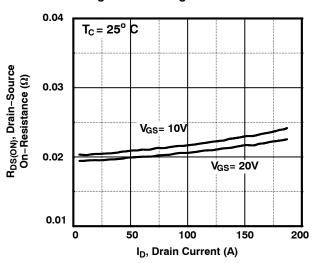


Figure 4. On-Resistance Variation vs. Drain Current and Gate Voltage

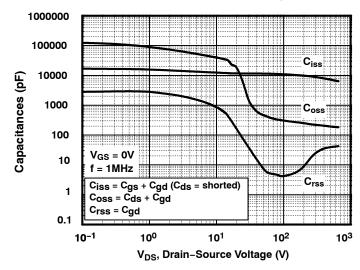


Figure 6. Capacitance Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

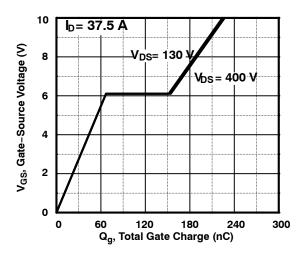


Figure 7. Gate Charge Characteristics

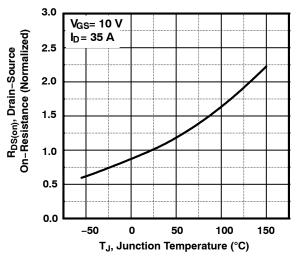


Figure 9. On-Resistance Variation vs. Temperature

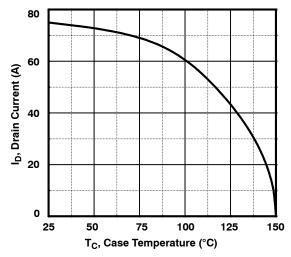


Figure 11. Maximum Drain Current vs. Case Temperature

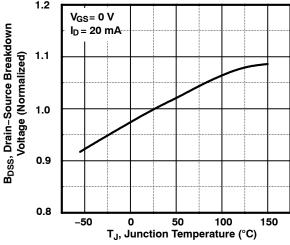


Figure 8. Breakdown Voltage Variation vs.
Temperature

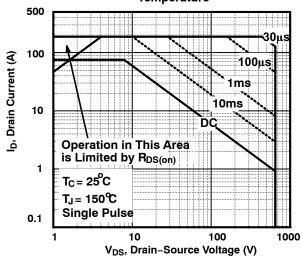


Figure 10. Maximum Safe Operating Area

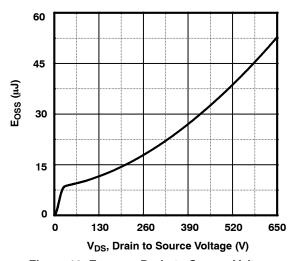


Figure 12. E_{OSS} vs. Drain to Source Voltage

1.2 | 1.0 |

Figure 13. Normalized Power Dissipation vs. Case Temperature

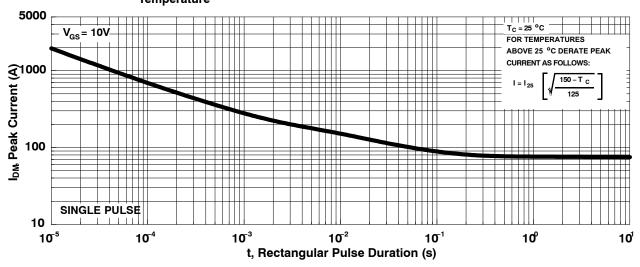
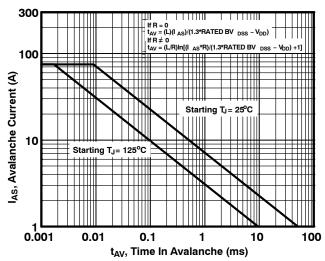



Figure 14. Peak Current Capability

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 15. Unclamped Inductive Switching Capability

.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

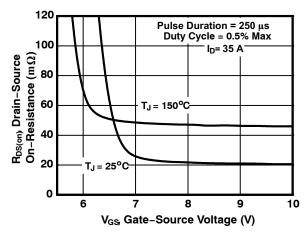


Figure 16. RDSON vs. Gate Voltage

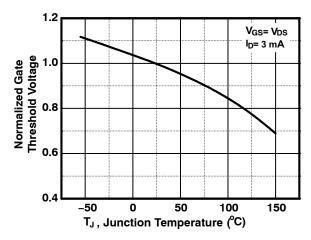


Figure 17. Normalized Gate Threshold Voltage vs. Temperature

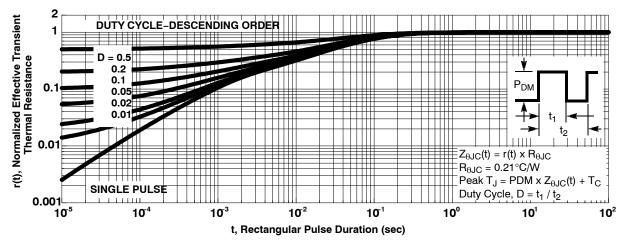


Figure 18. Transient Thermal Response Curve

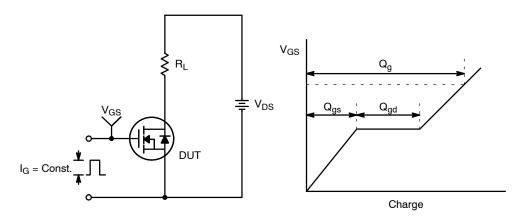


Figure 19. Gate Charge Test Circuit & Waveform

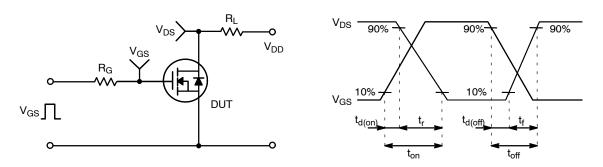


Figure 20. Resistive Switching Test Circuit & Waveforms

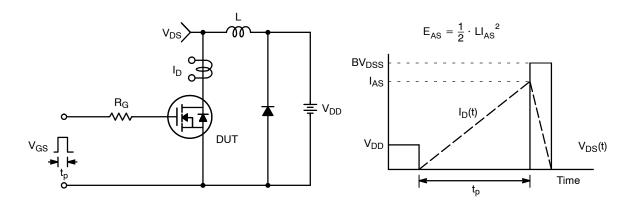


Figure 21. Unclamped Inductive Switching Test Circuit & Waveforms

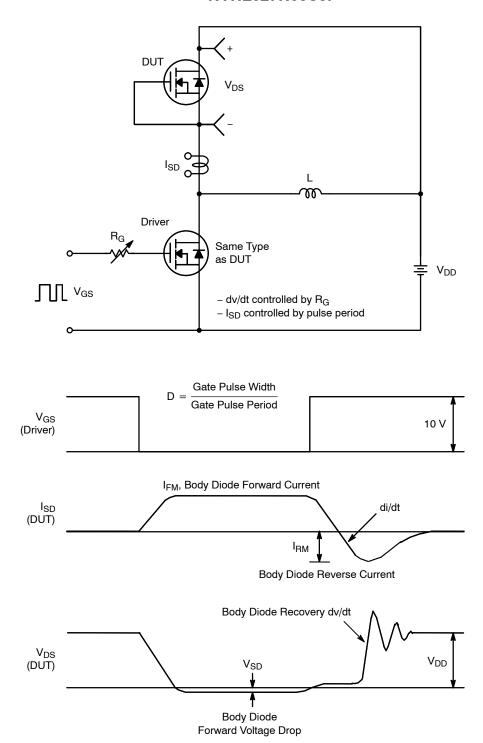
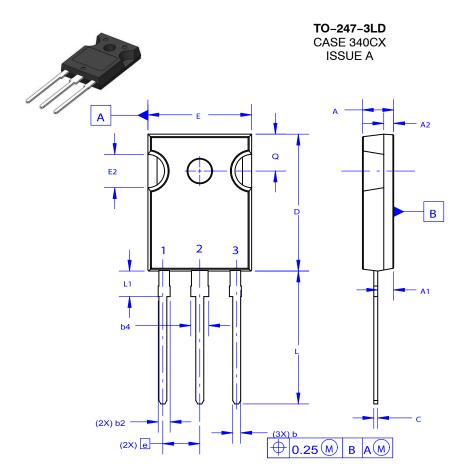
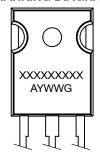



Figure 22. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET and FRFET are a registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

 B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " =", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
Ø P 1	6.60	6.80	7.00		

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B