MOSFET - SiC Power, Single N-Channel

1200 V, 80 mΩ, 31 A

NVHL080N120SC1

Features

- Typ. $R_{DS(on)} = 80 \text{ m}\Omega$
- Ultra Low Gate Charge (typ. $Q_{G(tot)} = 56 \text{ nC}$)
- Low Effective Output Capacitance (typ. Coss = 80 pF)
- 100% UIL Tested
- Qualified According to AEC-Q101
- These Devices are RoHS Compliant

Typical Applications

- Automotive On Board Charger
- Automotive DC/DC converter for EV/HEV

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

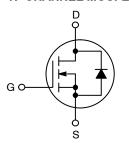
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage			V _{GS}	-15/+25	V
Recommended Operation Values of Gate-to-Source Voltage	T _C < 175°C		V_{GSop}	-5/+20	٧
Continuous Drain Current R _{0JC}	Steady State T _C = 25°C		I _D	31	Α
Power Dissipation $R_{\theta JC}$]		P_{D}	178	W
Continuous Drain Current R _{0JC}	Steady State	T _C = 100°C	I _D	22	Α
Power Dissipation $R_{\theta JC}$			P_{D}	89	W
Pulsed Drain Current (Note 2)	T _A = 25°C		I _{DM}	132	Α
Single Pulse Surge Drain Current Capability	T _A = 25°0 R _G	$C, t_p = 10 \mu s,$ = 4.7 Ω	I _{DSC}	132	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	18	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 18.5 A, L = 1 mH) (Note 3)			E _{AS}	171	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{\theta JC}$	0.84	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	°C/W

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature.
- 3. E_{AS} of 171 mJ is based on starting $T_J = 25^{\circ}C$; L = 1 mH, $I_{AS} = 18.5$ A, $V_{DD} = 120$ V, $V_{GS} = 18$ V.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
1200 V	110 mΩ @ 20 V	31 A

N-CHANNEL MOSFET

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

NVHL080N120SC1 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS

Drain-to-Source Breakdown Voltage V(BR)DSS V(BR)DS V(BR)DSS V(BR)DSS V(BR)DS V(BR)DSS V(BR)DS V(BR)DS V(BR)DSS V(BR)DS V(B	Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage V(BRI)DSS/T ₃ I _D = 1 mA, referenced to 25°C - 700 - mV/°C Temperature Coefficient I _{DSS} V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 25°C - - 100 µA µA	OFF CHARACTERISTICS						
Temperature Coefficient Ioss	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	1200	_	-	V
Vos = 0 V, Vos = 1200 V, T_J = 175°C		V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C	-	700	=	mV/°C
Gate-1o-Source Leakage Current IGSS VGS = +2E/-15 V, VDS = 0 V - - ±1 μA	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 25°C	_	-	100	μΑ
ON CHARACTERISTICS			V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 175°C	_	-	1	mA
Recommended Gate Voltage VGS(th) VGS = VDS. ID = 5 mA 1.8 2.7 4.3 V	Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +25/–15 V, V _{DS} = 0 V	_	-	±1	μΑ
Recommended Gate Voltage V _{GOP} V _{GS} = 20 V, I _D = 20 A, T _J = 25°C - 80 110 mΩ	ON CHARACTERISTICS	1			•		•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 5 \text{ mA}$	1.8	2.7	4.3	V
V _{GS} = 20 V, I _D = 20 A, T _J = 150°C - 114 -	Recommended Gate Voltage	V _{GOP}		-5	-	+20	V
Forward Transconductance gFS VDS = 20 V, ID = 20 A - 13 - S	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 20 V, I _D = 20 A, T _J = 25°C	_	80	110	mΩ
CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance			V _{GS} = 20 V, I _D = 20 A, T _J = 150°C	_	114	-	
Input Capacitance	Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 20 A	-	13	-	S
Output Capacitance COSS Reverse Transfer Capacitance − 80 − Reverse Transfer Capacitance CRSS − 6.5 − Total Gate Charge QG(tot) V _{GS} = −5/20 V, V _{DS} = 600 V, I _D = 20 A − 56 − nC Gate -to-Drain Charge QGD − 11 − 12 − Gate Resistance Rg f = 1 MHz − 1.7 − Ω SWITCHING CHARACTERISTICS Turn-On Delay Time t _{d(off)} V _{GS} = −5/20 V, V _{DS} = 800 V, I _D = 20 A, R _Q = 4.7 Ω, Inductive Load − 13 − ns Rise Time t _f Inductive Load − 13 − ns Fall Time t _f 1 − 10 − − 22 − Turn-Off Switching Loss E _{OFF} − 52 − 11 − DRAIN-SOURCE DIODE CHARACTERISTICS Continuous Drain-to-Source Diode Forward Current I _{SD} V _{GS} = −5 V, T _J = 25°C − −	CHARGES, CAPACITANCES & GATE	RESISTANCE					
Reverse Transfer Capacitance CRBS CRBS CRBS CRBS	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	_	1112	-	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{OSS}]	-	80	-	
Gate-to-Double Charge QGS QGB — 11	Reverse Transfer Capacitance	C _{RSS}]	_	6.5	-	
Gate - to - Drain Charge Q _{GD} Q _{GD} - 12 -	Total Gate Charge	Q _{G(tot)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V}, I_D = 20 \text{ A}$	-	56	-	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Source Charge	Q_{GS}		-	11	-	
	Gate-to-Drain Charge	Q_{GD}]	-	12	-	
Turn-On Delay Time $t_{d(on)}$ $V_{GS} = -5/20 \text{ V}, V_{DS} = 800 \text{ V}, V_{DS} = 400 $	Gate Resistance	R_{G}	f = 1 MHz	-	1.7	-	Ω
Rise Time t _r Turn-Off Delay Time t _{d(off)} t_{r}	SWITCHING CHARACTERISTICS						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 800 \text{ V},$	_	13	_	ns
Fall Time t_{f} Turn-On Switching Loss E_{ON} Turn-Off Switching Loss E_{OFF} Total Switching Loss E_{TOT} $DRAIN-SOURCE DIODE CHARACTERISTICS$ Continuous Drain-to-Source Diode Forward Current I_{SD} $V_{GS} = -5 \text{ V, } T_{J} = 25^{\circ}\text{C}$ $V_{GS} = -5 \text{ V, } T_{J} = 25$	Rise Time	t _r		-	20	-	
Turn-On Switching Loss E_{ON} Turn-Off Switching Loss E_{OFF} Total Switching Loss E_{TOT} DRAIN-SOURCE DIODE CHARACTERISTICS Continuous Drain-to-Source Diode Forward Current I_{SD} Pulsed Drain-to-Source Diode Forward Current (Note 2) Forward Diode Voltage I_{SD} Reverse Recovery Time I_{RR} Reverse Recovery Charge I_{REC}	Turn-Off Delay Time	t _{d(off)}]	-	22	-	
Turn-Off Switching Loss E_{OFF} $-$ 52 $-$ Total Switching Loss E_{TOT} $-$ 311 $ -$ 311 $ -$ 311 $ -$ 311 $ -$ 311 $ -$	Fall Time	t _f]	_	10	-	
Total Switching Loss E_{TOT} — 311 — 311 — DRAIN-SOURCE DIODE CHARACTERISTICS Continuous Drain-to-Source Diode Forward Current I_{SD} $V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$ — 18 A Pulsed Drain-to-Source Diode Forward Current (Note 2) I_{SDM} $V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$ — 132 A Forward Diode Voltage V_{SD} V_{SD} $V_{GS} = -5 \text{ V}, I_{SD} = 10 \text{ A}, T_J = 25^{\circ}\text{C}$ — 4 — V Reverse Recovery Time V_{RR} $V_{$	Turn-On Switching Loss	E _{ON}]	-	258	-	μJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Switching Loss	E _{OFF}]	-	52	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Switching Loss	E _{TOT}]	-	311	-	
Forward Current	DRAIN-SOURCE DIODE CHARACTERISTICS						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _{SD}	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$	-	_	18	А
Reverse Recovery Time t_{RR} $V_{GS} = -5/20 \text{ V}, I_{SD} = 20 \text{ A}, \\ dI_S/dt = 1000 \text{ A}/\mu\text{s}$ $-$ 16 $-$ ns $-$ nc Reverse Recovery Energy E_{REC} $-$ 5 $ \mu\text{J}$		I _{SDM}	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$	-	-	132	Α
Reverse Recovery Charge Q_{RR} $dl_S/dt = 1000 \text{ A}/\mu \text{s}$ $ 62$ $ nC$ Reverse Recovery Energy E_{REC} $ 5$ $ \mu J$	Forward Diode Voltage	V _{SD}	V _{GS} = -5 V, I _{SD} = 10 A, T _J = 25°C	_	4	-	V
Reverse Recovery Charge Q _{RR} - 62 - nC Reverse Recovery Energy E _{REC} - 5 - µJ	Reverse Recovery Time	t _{RR}		_	16	-	ns
	Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs	_	62	-	nC
	Reverse Recovery Energy	E _{REC}	1 1	_	5	-	μJ
	Peak Reverse Recovery Current	_	1	-	8	-	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

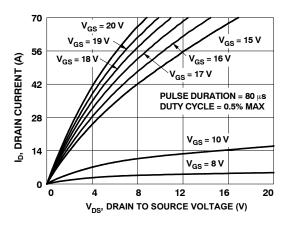


Figure 1. On Region Characteristics

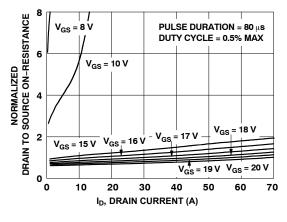


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

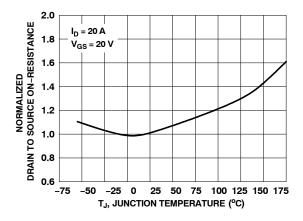


Figure 3. Normalized On Resistance vs. Junction Temperature

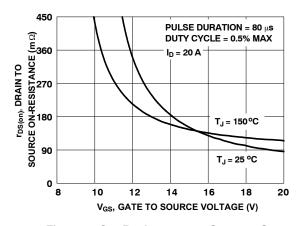


Figure 4. On-Resistance vs. Gate-to-Source Voltage

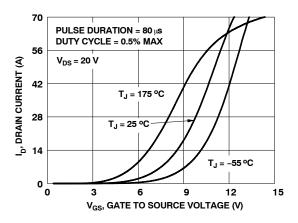


Figure 5. Transfer Characteristics

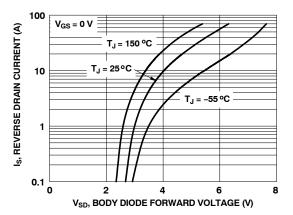


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

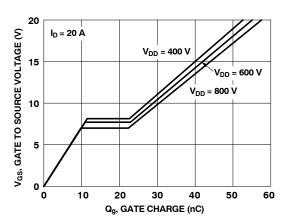


Figure 7. Gate Charge Characteristics

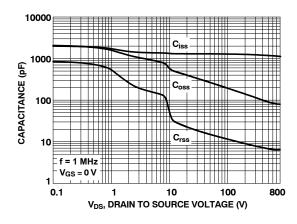


Figure 8. Capacitance vs. Drain-to-Source Voltage

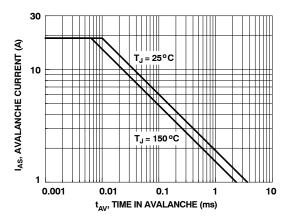


Figure 9. Unclamped Inductive Switching Capability

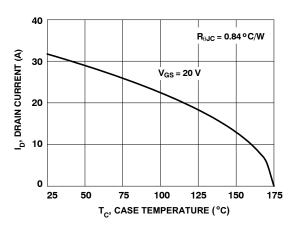


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

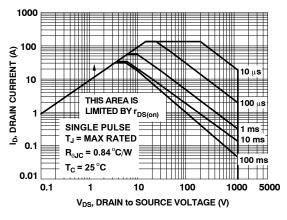


Figure 11. Forward Bias Safe Operating Area

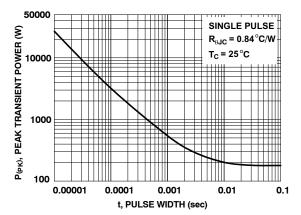
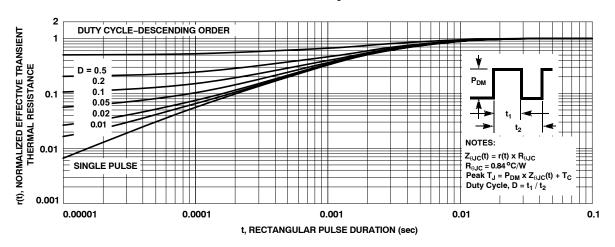
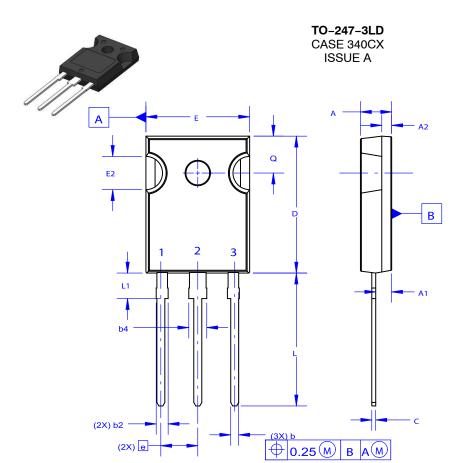
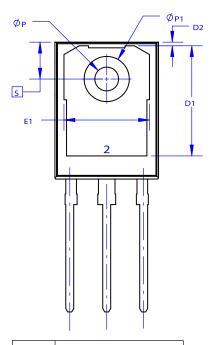


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

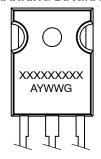




Figure 13. Junction-to-Case Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NVHL080N120SC1	NVHL080N120SC1	TO-247 Long Lead	Tube	N/A	N/A	30 Units

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

 B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " =", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
ØP1	6.60	6.80	7.00		

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B