MOSFET – Power, Dual N-Channel, Logic Level, Dual SO8FL 60 V, 39 mΩ, 17 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- NVMFD5877NLWF Wettable Flanks Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

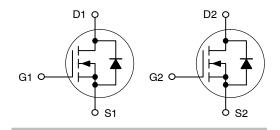
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	٧
Gate-to-Source Voltage)		V _{GS}	±20	V
Continuous Drain Cur-		T _{mb} = 25°C	I _D	17	Α
rent $R_{\Psi J-mb}$ (Notes 1, 2, 3, 4)	Steady	T _{mb} = 100°C		12	
Power Dissipation	State	T _{mb} = 25°C	P_{D}	23	W
$R_{\Psi J-mb}$ (Notes 1, 2, 3)		T _{mb} = 100°C		12	
Continuous Drain Cur-		T _A = 25°C	I _D	6	Α
rent R _{0JA} (Notes 1 & 3, 4)	Steady State	T _A = 100°C		5	
Power Dissipation		T _A = 25°C	P_{D}	3.2	W
R _{θJA} (Notes 1, 3)		T _A = 100°C		1.6	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	74	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	19	Α
Single Pulse Drain- to-Source Avalanche	(I _{L(pk)} = 14.5 A, L = 0.1 mH)		E _{AS}	10.5	mJ
Energy (T _J = 25°C, V _{DD} = 24 V, V _{GS} = 10 V, R _G = 25 Ω)	(I _{L(pk)} = 6.3 A, L = 2 mH)			40	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

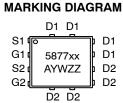
THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Note 2, 3)	$R_{\Psi J-mb}$	6.5	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	47	

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
60 V	39 mΩ @ 10 V	17 A	
	60 mΩ @ 4.5 V	17.6	

Dual N-Channel

5877NL = Specific Device Code for NVMFD5877NL

5877LW = Specific Device Code for NVMFD5877NLWF

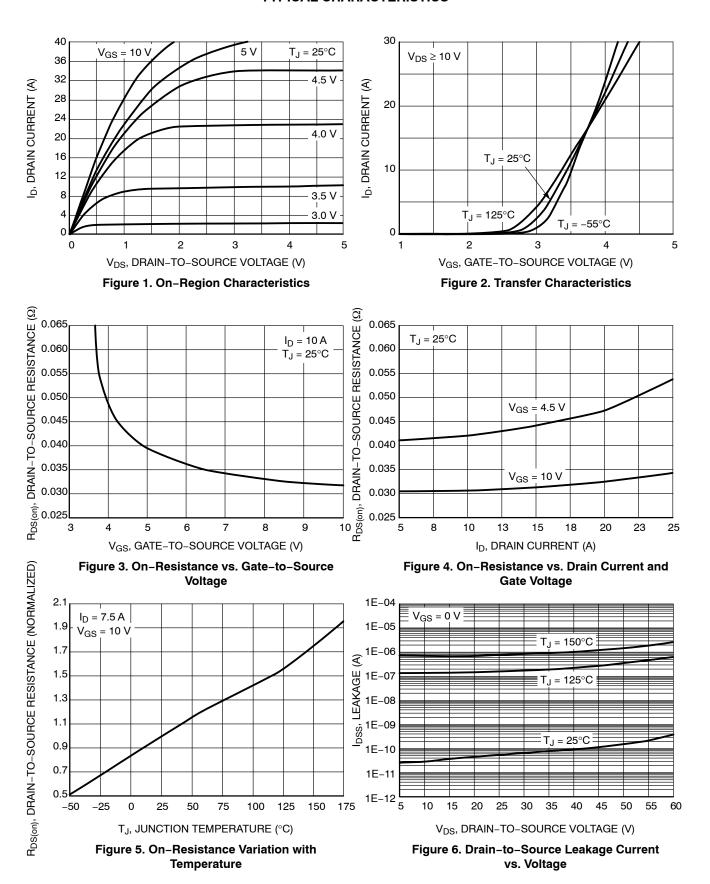
A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFD5877NLT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NVMFD5877NLWFT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NVMFD5877NLT3G	DFN8 (Pb-Free)	5000 / Tape & Reel
NVMFD5877NLWFT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


- Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
 Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
 Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				53		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS} = 60 \text{ V}$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)					•	•	•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = V_{DS}$	= 250 μΑ	1.0		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 7.5 A		31	39	mΩ
	,	V _{GS} = 4.5 V	I _D = 7.5 A		42	60	
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D	= 5.0 A		7.0		S
CHARGES AND CAPACITANCES	-				-	-	-
Input Capacitance	C _{iss}				540		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MH	łz, V _{DS} = 25 V		55		
Reverse Transfer Capacitance	C _{rss}		ľ		36		
Total Gate Charge	Q _{G(TOT)}				5.9		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _D	_S = 48 V,		0.62		
Gate-to-Source Charge	Q _{GS}	I _D = 5.0			1.64		
Gate-to-Drain Charge	Q_{GD}				2.80		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 4	18V, I _D = 5.0A		11	20	nC
SWITCHING CHARACTERISTICS (No	ote 6)						
Turn-On Delay Time	t _{d(on)}				8.1		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _D	_S = 48 V,		15.8		
Turn-Off Delay Time	t _{d(off)}	$I_D = 5.0 \text{ A}, R_G$	= 2.5 Ω		11.8		
Fall Time	t _f				3.9		
Turn-On Delay Time	t _{d(on)}				4.9		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DS}$	_S = 48 V,		6.4		1
Turn-Off Delay Time	t _{d(off)}	$I_D = 5.0 \text{ A}, R_G = 2.5 \Omega$			14.5		1
Fall Time	t _f				2.4		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.8	1.2	V
		$I_{S} = 5.0 \text{ A}$	T _J = 125°C		0.7		1
Reverse Recovery Time	t _{RR}				14.5		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V}, d_{ S}/d_t = 100 \text{ A/}\mu\text{s},$ $I_S = 5.0 \text{ A}$			11.5		1
Discharge Time	t _b				3.1		
Reverse Recovery Charge	Q_{RR}				11		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				0.93		nH
Drain Inductance	L _D	T 050	_		0.005		1
Gate Inductance	L _G	$T_A = 25^{\circ}$	`		1.84		1
Gate Resistance	R_{G}		ļ		1.5		Ω

^{5.} Pulse Test: pulse width = 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

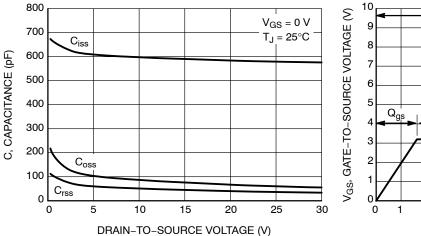


Figure 7. Capacitance Variation

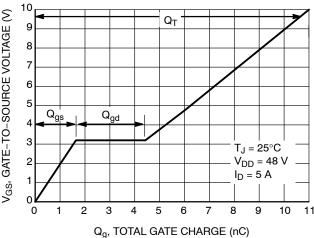


Figure 8. Gate-to-Source vs. Gate Charge

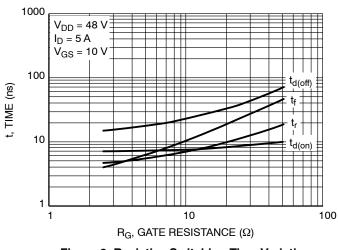


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

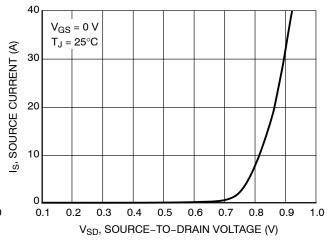


Figure 10. Diode Forward Voltage

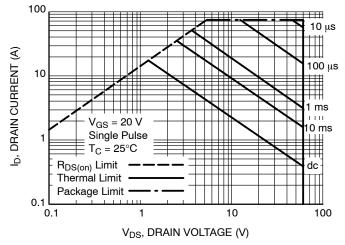


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

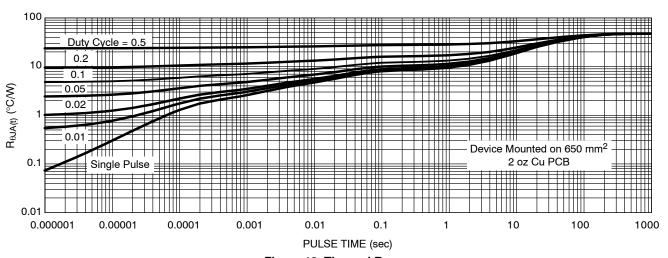
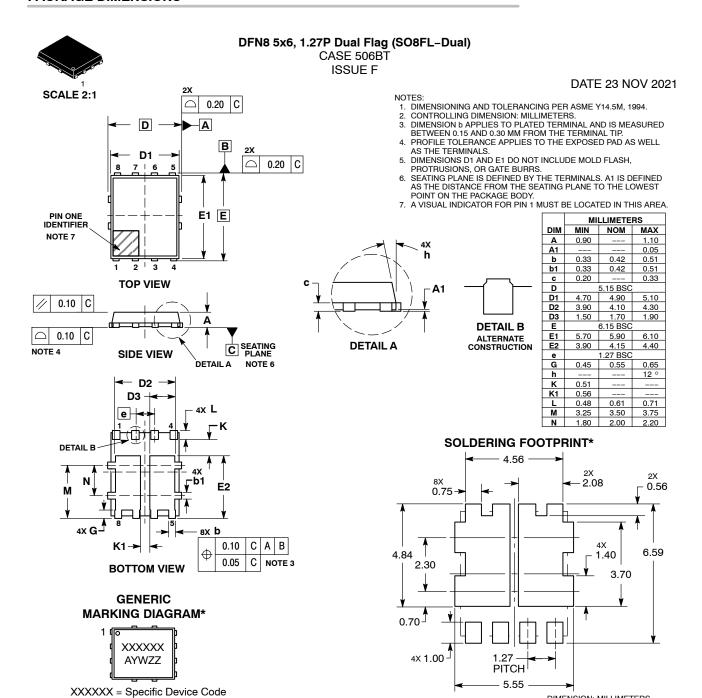



Figure 12. Thermal Response

W = Work Week ZZ = Lot Traceability	details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
his information is generic. Please refer to	

DESCRI	PTION:	DFN8 5X6. 1.27P DUAL FLAG (SO8FL-DUAL)		PAGE 1 OF 1	
DOCUMENT NU	MBER:	98AON50417E	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

= Assembly Location

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may

= Year

not follow the Generic Marking.

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B