Power MOSFET

40 V, 7.5 m Ω , 86 A, Single N–Channel, SO–8FL

Features

- Low R_{DS(on)}
- Low Capacitance
- Optimized Gate Charge
- AEC-Q101 Qualified and PPAP Capable
- NVMFS5833NWF Wettable Franks Option for Enhanced Optical Inspection
- These Devices are Pb-Free and are RoHS Compliant

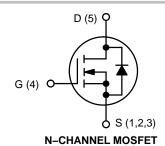
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain Cur-	Steady	$T_{mb} = 25^{\circ}C$	I _D	86	Α
rent $R_{\Psi J-mb}$ (Notes 1, 2, 3 & 4)		T _{mb} = 100°C		61	
Power Dissipation	State	T _{mb} = 25°C	P _D	112	W
R _{ΨJ-mb} (Notes 1, 2, 3)		$T_{mb} = 100^{\circ}C$		56	
Continuous Drain Cur-		T _A = 25°C	I _D	16	Α
rent R _{θJA} (Notes 1, 3 & 4)	Steady	T _A = 100°C		11	
Power Dissipation	State	T _A = 25°C	P _D	3.7	W
R _{θJA} (Notes 1 & 3)		T _A = 100°C		1.8	
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \mu s$		I _{DM}	324	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			IS	86	Α
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, I _{L(pk)} = 36 A, L = 0.1 mH)			E _{AS}	65	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	1.3	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	41	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface–mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 4. Continuous DC current rating. Maximum current for pulses as long as 1 second are higher but are dependent on pulse duration and duty cycle/

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	7.5 mΩ @ 10 V	86 A

SO-8 FLAT LEAD CASE 488AA STYLE 1

5833 = Specific Device Code xx = N (NVMFS5833N) or WF (NVMFS5833NWF)

A = Assembly Location Y = Year

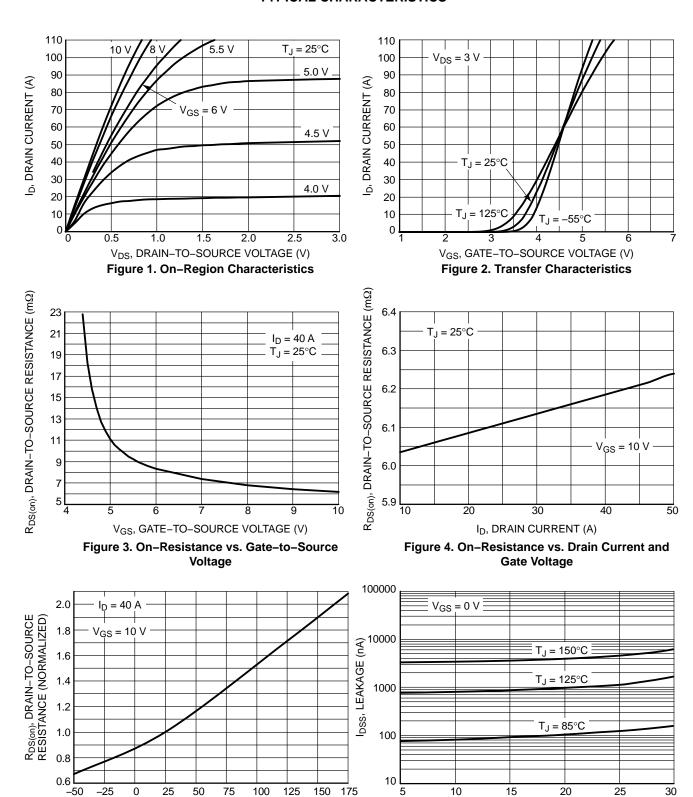
W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFS5833NT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NVMFS5833NT3G	SO-8FL (Pb-Free)	5000 / Tape & Reel
NVMFS5833NWFT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NVMFS5833NWFT3G	SO-8FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Symbol	Test Condition		Min	Тур	Max	Unit
-				•		•
V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
V _{(BR)DSS} /T _J				32.6		mV/°C
I _{DSS}	$V_{GS} = 0 \text{ V}$. $T_J = 25^{\circ}\text{C}$				1.0	μΑ
	$V_{DS} = 40 \text{ V}$	T _J = 125°C			100	
I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 1$	250 μΑ	2.0		3.5	V
V _{GS(TH)} /T _J				-7.6		mV/°C
R _{DS(on)}	V _{GS} = 10 V, I _D =	= 40 A		6.2	7.5	mΩ
9FS	$V_{DS} = 5 \text{ V}, I_{D} = 5 \text{ A}$			38		S
				•		•
C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz, } V_{DS} = 25 \text{ V}$			1714		pF
C _{oss}				210		1
C _{rss}				144		1
Q _{G(TOT)}				32.5		nC
Q _{G(TH)}	$V_{GS} = 10 \text{ V}, V_{DS} = 32 \text{ V},$ $I_D = 40 \text{ A}$			2.77		
Q _{GS}				7.37		
Q_{GD}				9		
ote 6)				•		•
t _{d(on)}				10.23		ns
t _r	V_{GS} = 10 V, V_{DS} = 20 V, I_D = 40 A, R_G = 2.5 Ω			19.5		
t _{d(off)}				23.60		
t _f				3.00		
ERISTICS				•		•
V_{SD}	V _{GS} = 0 V.	$T_J = 25^{\circ}C$		0.85	1.2	V
	$I_S = 40 \text{ A}$	T _J = 125°C		0.7		1
t _{RR}		1		23.5		ns
t _a	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 40 \text{ A}$			13.5		
				-		-1
t _b	$I_S = 40 A$			10		
	V(BR)DSS V(BR)DSS/TJ IDSS IGSS VGS(TH) VGS(TH)/TJ RDS(on) GFS Coss Crss QG(TOT) QGS QGD ote 6) td(on) tr td(off) tf ERISTICS VSD	V(BR)DSS	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A} & 40\\ \hline V_{(BR)DSS}/T_J & & & & & & & & & & & & & & & & & & &$	$\begin{array}{ c c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \ V, \ I_{D} = 250 \ \mu A & 40 \\ \hline V_{(BR)DSS}/T_{J} & 32.6 \\ \hline I_{DSS} & V_{GS} = 0 \ V, \\ V_{DS} = 40 \ V & T_{J} = 25^{\circ}C \\ \hline I_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V \\ \hline \hline V_{GS(TH)} & V_{GS} = V_{DS}, \ I_{D} = 250 \ \mu A & 2.0 \\ \hline V_{GS(TH)}/T_{J} & -7.6 \\ \hline R_{DS(on)} & V_{GS} = 10 \ V, \ I_{D} = 40 \ A & 6.2 \\ \hline g_{FS} & V_{DS} = 5 \ V, \ I_{D} = 5 \ A & 38 \\ \hline \hline C_{iss} & V_{GS} = 0 \ V, \ f = 1.0 \ MHz, \ V_{DS} = 25 \ V & 210 \\ \hline C_{rss} & 144 \\ \hline Q_{G(TOT)} & 32.5 \\ \hline Q_{GS} & 10 \ V, \ V_{DS} = 32 \ V, \\ \hline Q_{GS} & 9 \\ \hline ote 6) & 10.23 \\ \hline t_{f} & V_{GS} = 10 \ V, \ V_{DS} = 20 \ V, \\ \hline I_{D} = 40 \ A, \ R_{G} = 2.5 \ \Omega & 23.60 \\ \hline t_{f} & 3.00 \\ \hline ERISTICS & V_{GS} = 0 \ V, \ d_{IS}/d_{I} = 100 \ A/us. & 13.5 \\ \hline \end{array}$	$\begin{array}{ c c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \text{ V, } I_D = 250 \ \mu\text{A} & 40 \\ \hline V_{(BR)DSS}/T_J & 32.6 \\ \hline \\ I_{DSS} & V_{GS} = 0 \text{ V, } \\ V_{DS} = 40 \text{ V} & \hline \\ T_J = 125^{\circ}\text{C} & 1.0 \\ \hline \\ I_{GSS} & V_{DS} = 0 \text{ V, } V_{GS} = \pm 20 \text{ V} & \pm 100 \\ \hline \\ V_{GS(TH)} & V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A} & 2.0 & 3.5 \\ \hline \\ V_{GS(TH)}/T_J & -7.6 & \\ \hline \\ R_{DS(on)} & V_{GS} = 10 \text{ V, } I_D = 40 \text{ A} & 6.2 & 7.5 \\ \hline \\ g_{FS} & V_{DS} = 5 \text{ V, } I_D = 5 \text{ A} & 38 \\ \hline \\ C_{iss} & \\ C_{oss} & \\ C_{rss} & 1444 & \\ \hline \\ Q_{G(TOT)} & 32.5 & \\ \hline \\ Q_{GS} & \\ \hline \\ Q_{GT} & \\ \hline \\ Q_{GS} & \\ \hline \\ Q_{GD} & \\ \hline \\ ote 6) \\ \hline \\ t_{f} & \\ V_{GS} = 10 \text{ V, } V_{DS} = 20 \text{ V, } \\ I_D = 40 \text{ A, } R_G = 2.5 \ \Omega & 23.60 \\ \hline \\ t_{f} & \\ \hline \\ V_{SS} = 0 \text{ V, } d_{Is}/d_{I} = 100 \text{ A/us.} & 13.5 \\ \hline \end{array}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: pulse width = 300 μs, duty cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

 $\label{eq:TJ} \textbf{T}_{J}, \, \textbf{JUNCTION TEMPERATURE (°C)} \\ \textbf{Figure 5. On-Resistance Variation with} \\ \textbf{Temperature} \\$

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

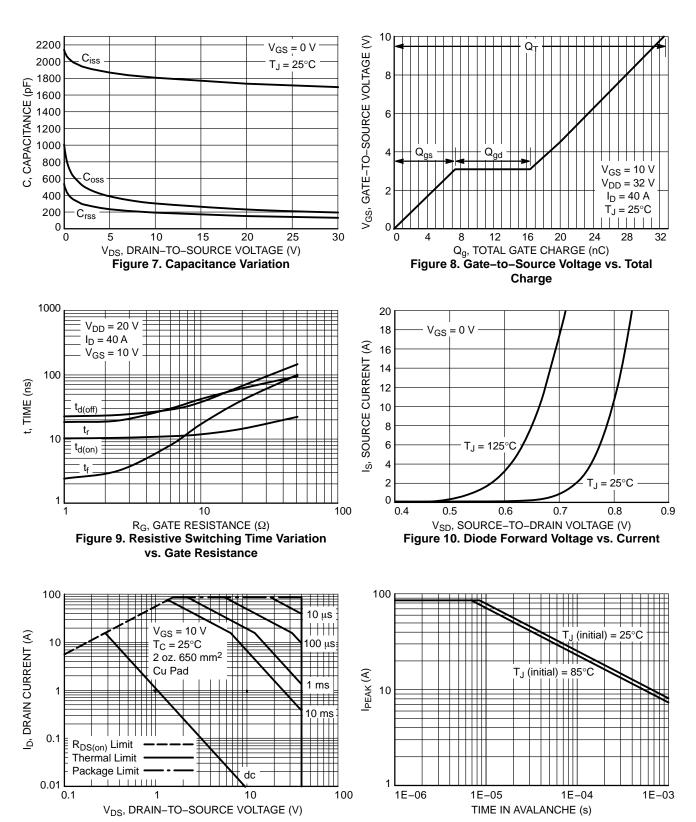


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Avalanche Characteristics

TYPICAL CHARACTERISTICS

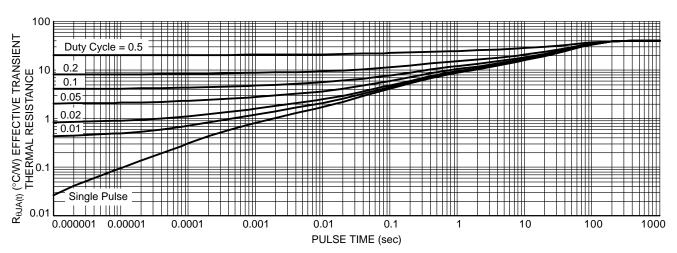


Figure 13. Thermal Response

0.10

0.10

SIDE VIEW

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

DATE 25 JUN 2018

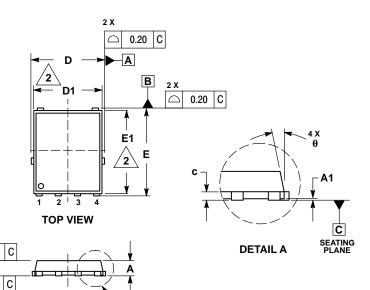
NOTES:

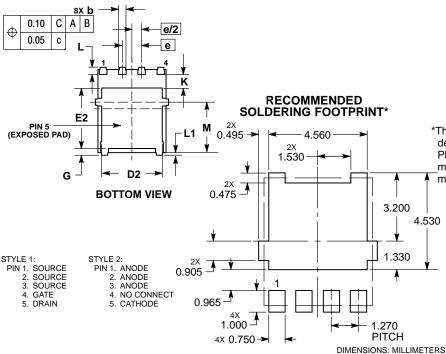
BURRS

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е	1.27 BSC			
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
M	3.00	3.40	3.80	
A	0 0		12 °	

GENERIC MARKING DIAGRAM*




XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week ZZ = Lot Traceability

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B