Power MOSFET

40 V, 7.5 m Ω , 86 A, Single N–Channel, SO–8FL

Features

- Low R_{DS(on)}
- Low Capacitance
- Optimized Gate Charge
- AEC-Q101 Qualified and PPAP Capable
- NVMFS5833NWF Wettable Franks Option for Enhanced Optical Inspection
- These Devices are Pb-Free and are RoHS Compliant

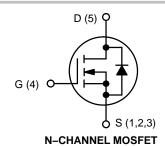
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain Current $R_{\Psi J-mb}$ (Notes 1, 2, 3 & 4)	Steady State	$T_{mb} = 25^{\circ}C$	I _D	86	Α
		T _{mb} = 100°C		61	
Power Dissipation $R_{\Psi J-mb}$ (Notes 1, 2, 3)		T _{mb} = 25°C	P _D	112	W
		$T_{mb} = 100^{\circ}C$		56	
Continuous Drain Cur-		T _A = 25°C	I _D	16	Α
rent $R_{\theta JA}$ (Notes 1, 3 & 4)	Steady State	T _A = 100°C		11	
Power Dissipation		T _A = 25°C	P _D	3.7	W
R _{θJA} (Notes 1 & 3)		T _A = 100°C		1.8	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	324	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			Is	86	Α
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, I _{L(pk)} = 36 A, L = 0.1 mH)			E _{AS}	65	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

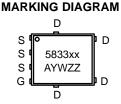
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	1.3	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	41	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface–mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 4. Continuous DC current rating. Maximum current for pulses as long as 1 second are higher but are dependent on pulse duration and duty cycle/

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	7.5 mΩ @ 10 V	86 A

SO-8 FLAT LEAD CASE 488AA STYLE 1

5833 = Specific Device Code xx = N (NVMFS5833N) or WF (NVMFS5833NWF)

A = Assembly Location Y = Year

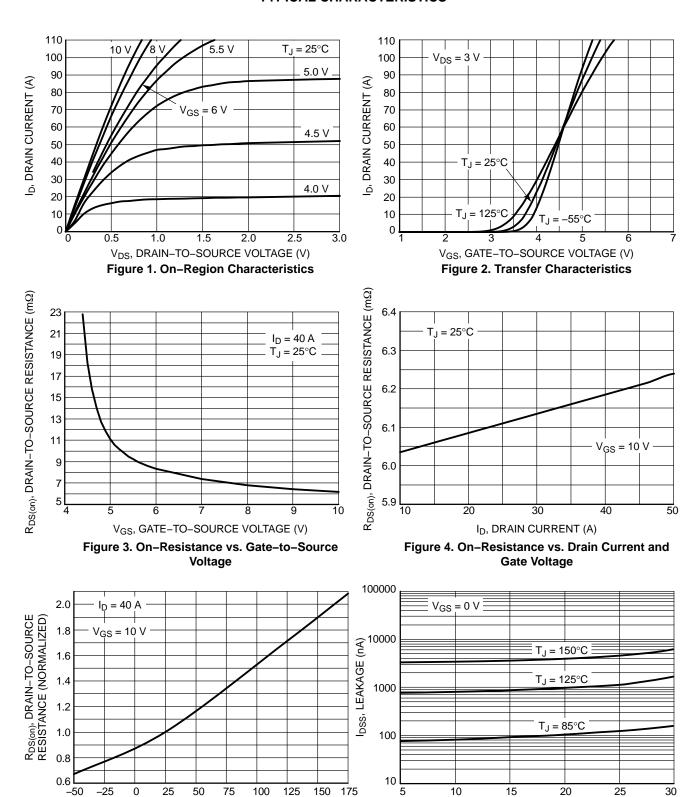
W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFS5833NT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NVMFS5833NT3G	SO-8FL (Pb-Free)	5000 / Tape & Reel
NVMFS5833NWFT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NVMFS5833NWFT3G	SO-8FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Symbol	Test Condition		Min	Тур	Max	Unit
-				•		•
V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
V _{(BR)DSS} /T _J				32.6		mV/°C
I _{DSS}	V _{GS} = 0 V.	T _J = 25°C			1.0	μА
	$V_{DS} = 40 \text{ V}$	T _J = 125°C			100	
I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 1$	250 μΑ	2.0		3.5	V
V _{GS(TH)} /T _J				-7.6		mV/°C
R _{DS(on)}	V _{GS} = 10 V, I _D = 40 A			6.2	7.5	mΩ
9FS	$V_{DS} = 5 \text{ V}, I_{D} = 5 \text{ A}$			38		S
				•		•
C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			1714		pF
C _{oss}				210		
C _{rss}				144		
Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 32 V, I _D = 40 A			32.5		nC
Q _{G(TH)}				2.77		
Q _{GS}				7.37		
Q_{GD}		ŀ		9		
ote 6)				•		•
t _{d(on)}				10.23		ns
t _r	Vcs = 10 V. Vns :	= 20 V.		19.5		
t _{d(off)}	$I_D = 40 \text{ A}, R_G = 2.5 \Omega$			23.60		
t _f				3.00		
ERISTICS				•		•
V_{SD}	V _{GS} = 0 V, I _S = 40 A	$T_J = 25^{\circ}C$		0.85	1.2	V
		T _J = 125°C		0.7		1
t _{RR}	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 40 \text{ A}$			23.5		ns
t _a				13.5		
				-		-1
t _b	$I_S = 40 A$			10		
	V(BR)DSS V(BR)DSS/TJ IDSS IGSS VGS(TH) VGS(TH)/TJ RDS(on) GFS Coss Crss QG(TOT) QGS QGD ote 6) td(on) tr td(off) tf ERISTICS VSD	V(BR)DSS	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A} & 40\\ \hline V_{(BR)DSS}/T_J & & & & & & & & & & & & & & & & & & &$	$\begin{array}{ c c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \ V, \ I_{D} = 250 \ \mu A & 40 \\ \hline V_{(BR)DSS}/T_{J} & 32.6 \\ \hline I_{DSS} & V_{GS} = 0 \ V, \\ V_{DS} = 40 \ V & T_{J} = 25^{\circ}C \\ \hline I_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V \\ \hline \hline V_{GS(TH)} & V_{GS} = V_{DS}, \ I_{D} = 250 \ \mu A & 2.0 \\ \hline V_{GS(TH)}/T_{J} & -7.6 \\ \hline R_{DS(on)} & V_{GS} = 10 \ V, \ I_{D} = 40 \ A & 6.2 \\ \hline g_{FS} & V_{DS} = 5 \ V, \ I_{D} = 5 \ A & 38 \\ \hline \hline C_{iss} & V_{GS} = 0 \ V, \ f = 1.0 \ MHz, \ V_{DS} = 25 \ V & 210 \\ \hline C_{rss} & 144 \\ \hline Q_{G(TOT)} & 32.5 \\ \hline Q_{GS} & 10 \ V, \ V_{DS} = 32 \ V, \\ \hline Q_{GS} & 9 \\ \hline ote 6) & 10.23 \\ \hline t_{f} & V_{GS} = 10 \ V, \ V_{DS} = 20 \ V, \\ \hline I_{D} = 40 \ A, \ R_{G} = 2.5 \ \Omega & 23.60 \\ \hline t_{f} & 3.00 \\ \hline ERISTICS & V_{GS} = 0 \ V, \ d_{IS}/d_{I} = 100 \ A/us. & 13.5 \\ \hline \end{array}$	$\begin{array}{ c c c c c }\hline V_{(BR)DSS} & V_{GS} = 0 \text{ V, } I_D = 250 \ \mu\text{A} & 40 \\ \hline V_{(BR)DSS}/T_J & 32.6 \\ \hline \\ I_{DSS} & V_{GS} = 0 \text{ V, } \\ V_{DS} = 40 \text{ V} & \hline \\ T_J = 125^{\circ}\text{C} & 1.0 \\ \hline \\ I_{GSS} & V_{DS} = 0 \text{ V, } V_{GS} = \pm 20 \text{ V} & \pm 100 \\ \hline \\ V_{GS(TH)} & V_{GS} = V_{DS}, \ I_D = 250 \ \mu\text{A} & 2.0 & 3.5 \\ \hline \\ V_{GS(TH)}/T_J & -7.6 & \\ \hline \\ R_{DS(on)} & V_{GS} = 10 \text{ V, } I_D = 40 \text{ A} & 6.2 & 7.5 \\ \hline \\ g_{FS} & V_{DS} = 5 \text{ V, } I_D = 5 \text{ A} & 38 \\ \hline \\ \hline \\ C_{iss} & \\ C_{oss} & \\ C_{rss} & 1444 & \\ \hline \\ Q_{G(TOT)} & 32.5 & \\ \hline \\ Q_{G} & 10 \text{ V, } V_{DS} = 32 \text{ V, } \\ I_D = 40 \text{ A} & 7.37 & \\ \hline \\ Q_{GS} & 9 & \\ \hline \\ t_f & V_{GS} = 10 \text{ V, } V_{DS} = 20 \text{ V, } \\ I_D = 40 \text{ A, } R_G = 2.5 \ \Omega & 23.60 \\ \hline \\ t_f & 3.00 & \\ \hline \\ ERISTICS & \\ \hline \\ t_8 & V_{GS} = 0 \text{ V, } d_{Is}/d_I = 100 \text{ A/us.} & 13.5 \\ \hline \end{array}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: pulse width = 300 μs, duty cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

 $\label{eq:TJ} \textbf{T}_{J}, \, \textbf{JUNCTION TEMPERATURE (°C)} \\ \textbf{Figure 5. On-Resistance Variation with} \\ \textbf{Temperature} \\$

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

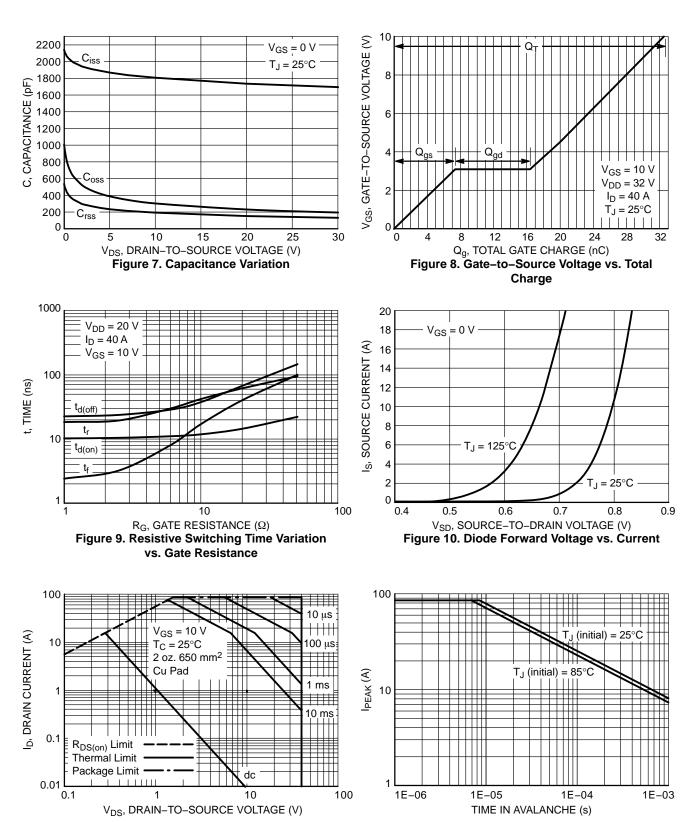


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Avalanche Characteristics

TYPICAL CHARACTERISTICS

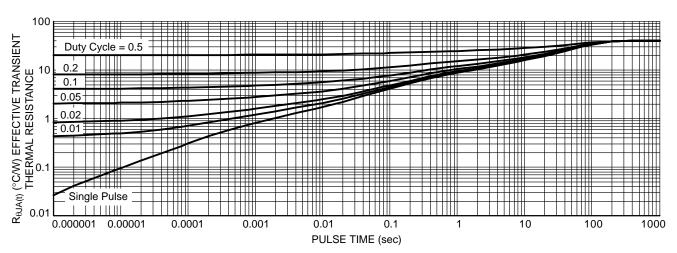
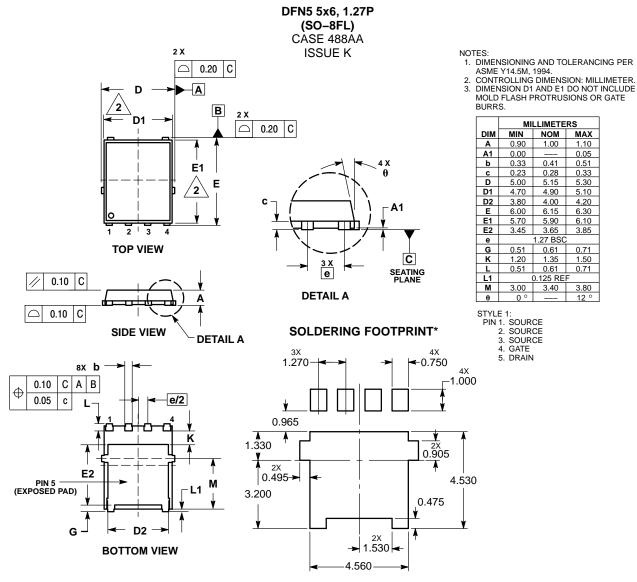



Figure 13. Thermal Response

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3