Power MOSFET

100 V, 13 m Ω , 55 A, Single N-Channel

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS6B14NLWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

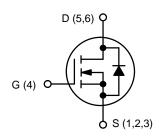
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltage			V_{GS}	±16	V
Continuous Drain Cur-		T _C = 25°C	I _D	55	Α
rent R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C		39	
Power Dissipation R _{θJC}	State	T _C = 25°C	P_{D}	94	W
(Note 1)		T _C = 100°C		47	
Continuous Drain Cur-	Steady State	T _A = 25°C	I _D	11	Α
rent $R_{\theta JA}$ (Notes 1, 2, 3)		T _A = 100°C		8.0	
Power Dissipation R _{θJA}		T _A = 25°C	P _D	3.8	W
(Notes 1 & 2)		T _A = 100°C		1.9	
Pulsed Drain Current $T_A = 25^{\circ}C$, $t_p = 10 \mu s$			I _{DM}	140	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to + 175	ç
Source Current (Body Diode)			Is	60	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 2.0 A)			E _{AS}	811	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

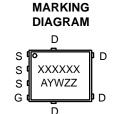
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	1.6	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	40	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	13 mΩ @ 10 V	55 A
100 V	19 mΩ @ 4.5 V	35 K

N-CHANNEL MOSFET

DFN5 (SO-8FL) CASE 488AA STYLE 1

XXXXXX = 6B14NL

(NVMFS6B14NL) or 6B14LW

(NVMFS6B14NLWF)

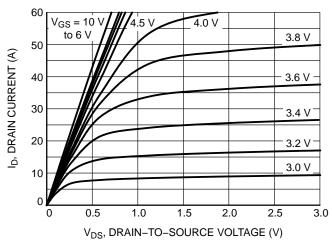
A = Assembly Location

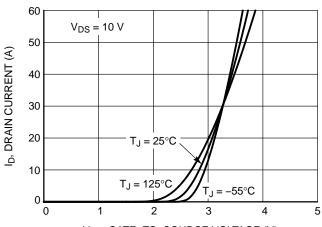
Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


$V_{DS} = 80 \text{ V} \qquad T_{J}$ $Gate-to-Source \text{ Leakage Current} \qquad I_{GSS} \qquad V_{DS} = 0 \text{ V, } V_{GS} = 16 \text{ ON CHARACTERISTICS (Note 4)}$ $Gate \text{ Threshold Voltage} \qquad V_{GS(TH)} \qquad V_{GS} = V_{DS}, I_{D} = 250 Constant of the parameter of the properties of t$	T _J = 25°C J = 125°C 6 V 0 μA I _D = 20 A	1.0	-5.8 10.5 15.5 1680 580 42	25 250 100 3.0 13 19	V mV/°C μA nA V mV/°C mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T _J = 25°C J = 125°C 6 V 0 μA I _D = 20 A		-5.8 10.5 15.5	250 100 3.0	mV/°C μA nA V mV/°C mΩ
	J = 125°C 6 V 0 μA I _D = 20 A	1.0	-5.8 10.5 15.5	250 100 3.0	μA nA V mV/°C mΩ
$V_{DS} = 80 \text{ V} \qquad T_{J}$ $Gate-to-Source \text{ Leakage Current} \qquad I_{GSS} \qquad V_{DS} = 0 \text{ V, V}_{GS} = 10 \text{ V}$ $ON \text{ CHARACTERISTICS (Note 4)}$ $Gate \text{ Threshold Voltage} \qquad V_{GS(TH)} \qquad V_{GS} = V_{DS}, I_D = 250 \text{ V}$ $Threshold \text{ Temperature Coefficient} \qquad V_{GS(TH)}/T_{J}$ $Drain-to-Source \text{ On Resistance} \qquad V_{GS(TH)}/T_{J}$ $CHARGES \text{ AND CAPACITANCES}$ $Input \text{ Capacitance} \qquad C_{ISS}$ $Output \text{ Capacitance} \qquad C_{ISS}$ $Output \text{ Capacitance} \qquad C_{RSS}$ $Reverse \text{ Transfer Capacitance} \qquad C_{RSS}$ $Total \text{ Gate Charge} \qquad Q_{G(TOT)}$ $Threshold \text{ Gate Charge} \qquad Q_{G}$ $Gate-to-Drain \text{ Charge} \qquad Q_{GD}$ $Plateau \text{ Voltage} \qquad V_{GP}$ $SWITCHING \text{ CHARACTERISTICS (Note 5)}$ $Turn-On \text{ Delay Time} \qquad t_{d(ON)}$	J = 125°C 6 V 0 μA I _D = 20 A	1.0	10.5 15.5 1680 580	250 100 3.0	nA V mV/°C mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 V 0 μA I _D = 20 A	1.0	10.5 15.5 1680 580	3.0	nA V mV/°C mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 μA I _D = 20 A OS = 25 V	1.0	10.5 15.5 1680 580	3.0	V mV/°C mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _D = 20 A -	1.0	10.5 15.5 1680 580	13	mV/°C mΩ
$ \begin{array}{c} \text{Threshold Temperature Coefficient} & V_{\text{GS}(\text{TH})}/\text{T}_{\text{J}} \\ \\ Drain-to-Source On Resistance & R_{\text{DS}(\text{on})} & V_{\text{GS}} = 10 \text{ V} \\ \hline \\ \textbf{CHARGES AND CAPACITANCES} \\ \\ Input Capacitance & C_{ISS} \\ Output Capacitance & C_{OSS} & V_{GS} = 0 \text{ V, } f = 1 \text{ MHz, } \text{ V}_{DS} \\ \hline \\ \text{Reverse Transfer Capacitance} & C_{RSS} & V_{GS} = 4.5 \text{ V, } \text{ V}_{DS} = 50 \text{ V;} \\ \hline \\ \text{Total Gate Charge} & Q_{G}(\text{TOT}) & V_{GS} = 4.5 \text{ V, } \text{ V}_{DS} = 50 \text{ V;} \\ \hline \\ \text{Gate-to-Source Charge} & Q_{GD} & V_{GS} = 10 \text{ V, } \text{ V}_{DS} = 50 \text{ V;} \\ \hline \\ \text{Gate-to-Drain Charge} & Q_{GD} & V_{GP} \\ \hline \\ \text{SWITCHING CHARACTERISTICS (Note 5)} \\ \hline \\ \text{Turn-On Delay Time} & t_{d(ON)} & \\ \hline \\ \hline \end{array} $	I _D = 20 A -	1.0	10.5 15.5 1680 580	13	mV/°C mΩ
$ \begin{array}{c} \text{Drain-to-Source On Resistance} \\ \text{Drain-to-Source On Resistance} \\ \text{CHARGES AND CAPACITANCES} \\ \text{Input Capacitance} \\ \text{Output Capacitance} \\ \text{Reverse Transfer Capacitance} \\ \text{Total Gate Charge} \\ \text{Cate-to-Source Charge} \\ \text{Gate-to-Drain Charge} \\ \text{Plateau Voltage} \\ \text{SWITCHING CHARACTERISTICS (Note 5)} \\ \hline \\ \text{Turn-On Delay Time} \\ \end{array} \begin{array}{c} V_{GS} = 10 \text{ V} \\ V_{GS} = 4.5 \text{ V} \\ V_{DS} = 50 \text{ V} \\ V_{GS} = 10 \text{ V} \\ V_{DS} = 50 \text{ V} \\ V_{GS} = 10 \text{ V} \\ V_{DS} = 50 \text{ V} \\ V_{CS} = 10 \text{ V} \\ V_{C$	_{DS} = 25 V		10.5 15.5 1680 580		mΩ
$ \begin{array}{ c c c c c c } \hline Drain-to-Source On Resistance & R_{DS(on)} & V_{GS} = 4.5 \text{ V} \\ \hline \hline \textbf{CHARGES AND CAPACITANCES} \\ \hline Input Capacitance & C_{ISS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Reverse Transfer Capacitance & C_{RSS} \\ \hline \hline Total Gate Charge & Q_{G(TOT)} \\ \hline \hline Threshold Gate Charge & Q_{GS} \\ \hline Gate-to-Source Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \hline \textbf{SWITCHING CHARACTERISTICS (Note 5)} \\ \hline \hline Turn-On Delay Time & t_{d(ON)} \\ \hline \hline \hline \\ \hline \hline \hline \textbf{CHARGES AND CAPACITANCES} \\ \hline \hline \textbf{V}_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}; \\ \hline \textbf{V}_{GS} = 10 \text{ V}, V_{DS} = 50 \text{ V}; \\ \hline \textbf{V}_{GS} = 10 \text{ V}, V_{DS} = 50 \text{ V}; \\ \hline \textbf{Coss} \\ \hline \textbf{V}_{GP} \\ \hline \hline \textbf{V}_{GP} \\ \hline \hline \textbf{SWITCHING CHARACTERISTICS (Note 5)} \\ \hline \hline \textbf{Turn-On Delay Time} \\ \hline \hline \hline \textbf{V}_{G(ON)} \\ \hline \hline \hline \textbf{V}_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}; \\ \hline \textbf{V}_{GS} = 10 \text{ V}; \\ \hline \textbf{V}_{G$	_{DS} = 25 V		15.5 1680 580		
	_{DS} = 25 V		1680 580	19	<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			580		pF
$ \begin{array}{c cccc} Output \ Capacitance & C_{OSS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} \\ \hline Reverse \ Transfer \ Capacitance & C_{RSS} & \\ \hline Total \ Gate \ Charge & Q_{G(TOT)} & \\ \hline Threshold \ Gate \ Charge & Q_{GS} \\ \hline Gate-to-Source \ Charge & Q_{GS} \\ \hline Plateau \ Voltage & V_{GP} \\ \hline SWITCHING \ CHARACTERISTICS \ (Note 5) & \\ \hline Turn-On \ Delay \ Time & t_{d(ON)} \\ \hline \end{array} $			580		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					pF
$Q_{G(TOT)} = \begin{array}{c} V_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}; \\ V_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}; \\ \hline \text{Threshold Gate Charge} & Q_{G(TH)} \\ \hline \text{Gate-to-Source Charge} & Q_{GS} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \text{Plateau Voltage} & V_{GP} \\ \hline \text{SWITCHING CHARACTERISTICS (Note 5)} \\ \hline \text{Turn-On Delay Time} & t_{d(ON)} \\ \hline \end{array}$	I _D = 25 A		42		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _D = 25 A				1
Threshold Gate Charge $Q_{G(TH)}$ Gate-to-Source Charge Q_{GS} Gate-to-Drain Charge Q_{GD} Plateau Voltage V_{GP} SWITCHING CHARACTERISTICS (Note 5) Turn-On Delay Time $t_{d(ON)}$			8		
			17		nC
Gate-to-Drain Charge Q _{GD} Plateau Voltage V _{GP} SWITCHING CHARACTERISTICS (Note 5) Turn-On Delay Time Turn-On Delay Time t _{d(ON)}			2.2		
Plateau Voltage V _{GP} SWITCHING CHARACTERISTICS (Note 5) Turn-On Delay Time t _{d(ON)}	I _D = 25 A		4.1		
SWITCHING CHARACTERISTICS (Note 5) Turn-On Delay Time			2.0		
Turn-On Delay Time t _{d(ON)}			3.3		V
Diag Time		-			
Pico Timo			11		
Rise Time t_r $V_{GS} = 4.5 \text{ V}, V_{DS} = 5$	50 V.		67.6		ns ns
Turn–Off Delay Time $t_{d(OFF)}$ $I_D = 25 \text{ A}, R_G = 1.0$	Ω		14.8		
Fall Time t _f			7.2		
DRAIN-SOURCE DIODE CHARACTERISTICS	•	•			
Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V},$ T	_J = 25°C		0.83	1.2	\ ,.
	_J = 125°C		0.72		V
Reverse Recovery Time t _{RR}			48		
Charge Time $t_a = V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ V}$			25		ns
Discharge Time t_b $I_S = 25 \text{ A}$	0 A/us.		23		1 !
Reverse Recovery Charge Q _{RR}	0 A/μs,				nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)
Figure 2. Transfer Characteristics

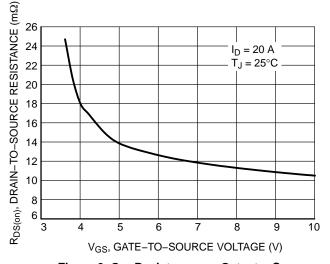


Figure 3. On–Resistance vs. Gate–to–Source Voltage

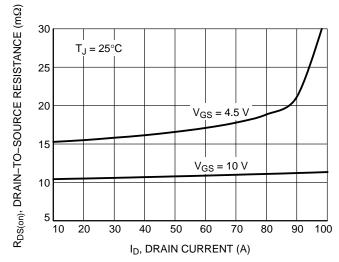


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

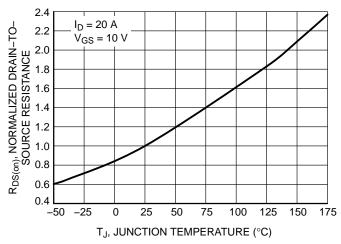


Figure 5. On–Resistance Variation with Temperature

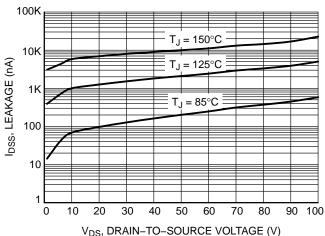
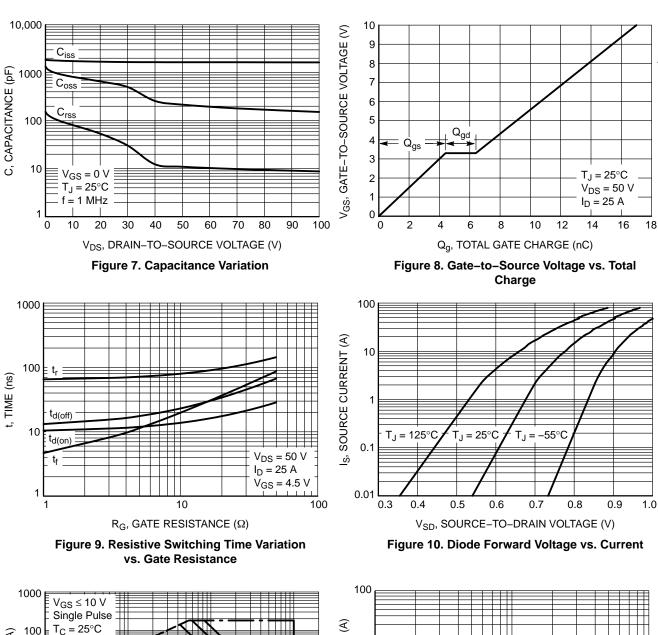
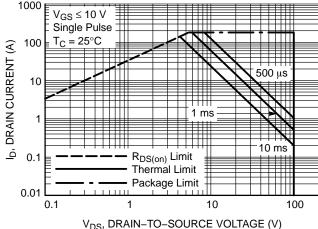
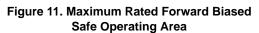





Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

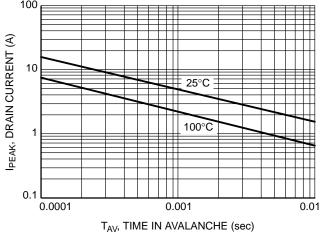


Figure 12. I_{PEAK} vs. T_{AV}

TYPICAL CHARACTERISTICS

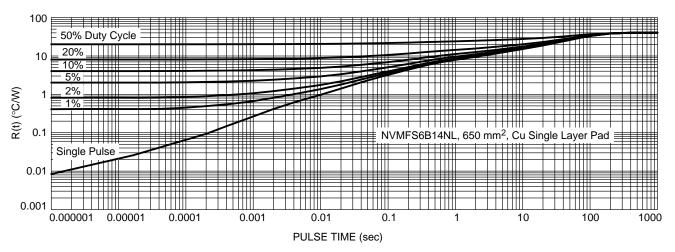


Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS6B14NLT1G	6B14NL	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS6B14NLWFT1G	6B14LW	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS6B14NLT3G	6B14NL	DFN5 (Pb-Free)	5000 / Tape & Reel
NVMFS6B14NLWFT3G	6B14LW	DFN5 (Pb–Free, Wettable Flanks)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

0.10

0.10

SIDE VIEW

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

DATE 25 JUN 2018

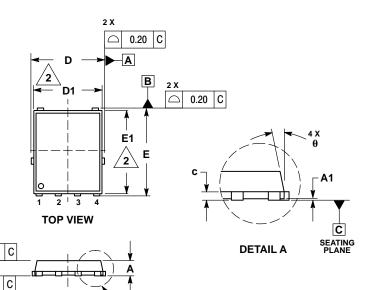
NOTES:

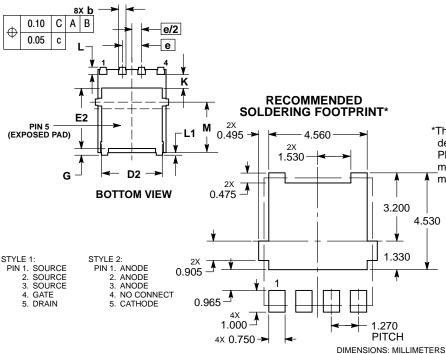
BURRS

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е		1.27 BSC	;	
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
M	3.00	3.40	3.80	
A	0 0		12 °	

GENERIC MARKING DIAGRAM*




XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week ZZ = Lot Traceability

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B