onsemi

MOSFET - Power, Single N-Channel, STD Gate, SO8FL

80 V, 1.43 mΩ, 253 A

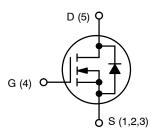
NVMFWS1D5N08X

Features

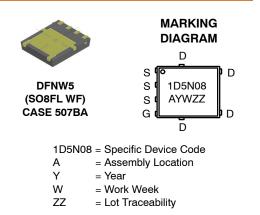
- Low Q_{RR}, Soft Recovery Body Diode
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen-Free/BFR-Free and are RoHS Compliant

Applications

- Synchronous Rectification (SR) in DC-DC and AC-DC
- Primary Switch in Isolated DC-DC Converter
- Motor Drives
- Automotive 48 V System


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	80	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	T _C = 25°C	۱ _D	253	А
(Note 1)	T _C = 100°C		179	
Power Dissipation (Note 1)	T _C = 25°C	PD	194	W
Pulsed Drain Current	T _C = 25°C,	I _{DM}	1071	А
Pulsed Source Current (Body Diode)	t _p = 100 μs	I _{SM}	1071	
Operating Junction and Storage T Range	T _J , T _{stg}	–55 to +175	°C	
Source Current (Body Diode)		I _S	303	А
Single Pulse Avalanche Energy (I _{PK} = 67 A) (Note 3)		E _{AS}	225	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted.
- Actual continuous current will be limited by thermal & electromechanical application board design.
- 3. \vec{E}_{AS} of 225 mJ is based on started T_J = 25°C, I_{AS} = 67 A, V_{DD} = 64 V, V_{GS} = 10 V, 100% avalanche tested

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX		
80 V	1.43 m Ω @ 10 V	253 A		

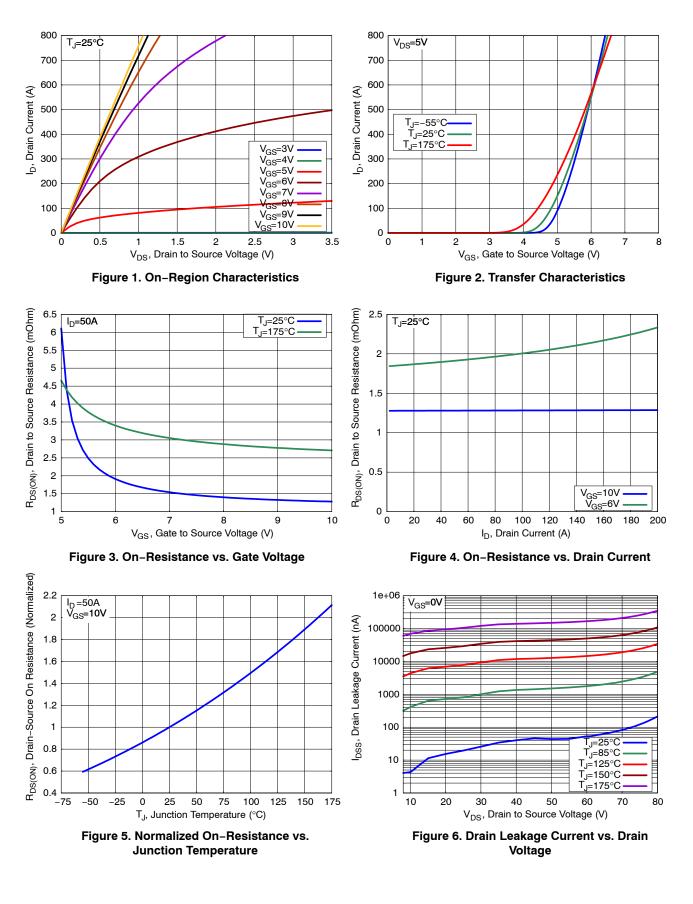
N-CHANNEL MOSFET

ORDERING INFORMATION

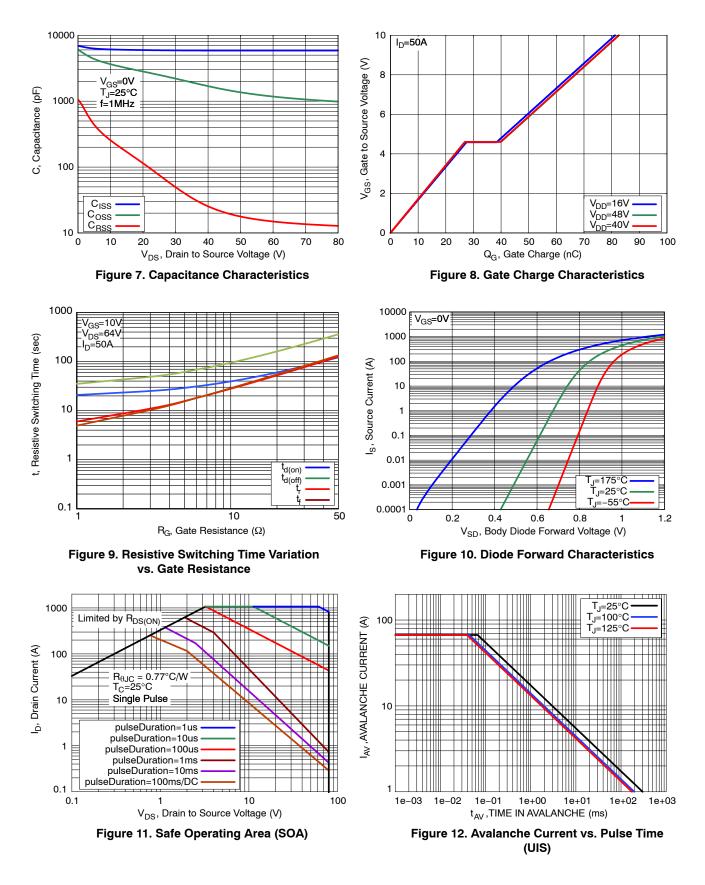
See detailed ordering, marking and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS

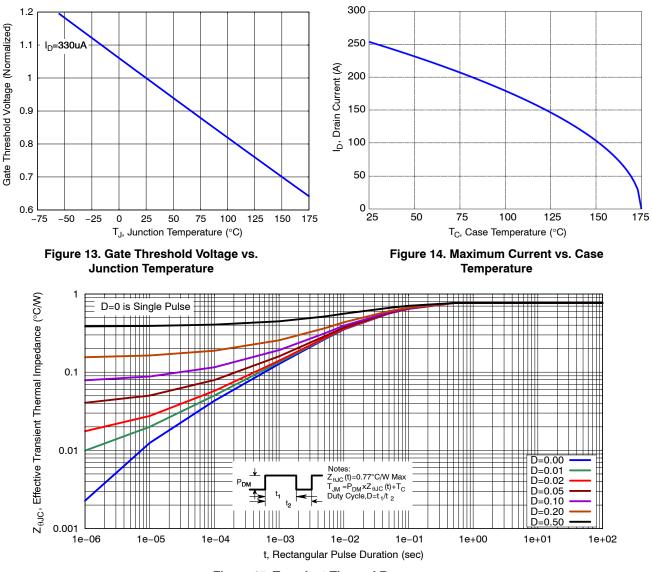
Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	0.77	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 4, 5)	$R_{\theta JA}$	39	


4. Surface-mounted on FR4 board using a 1 in², 1 oz. Cu pad. 5. $R_{\theta JA}$ is determined by the user's board design.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

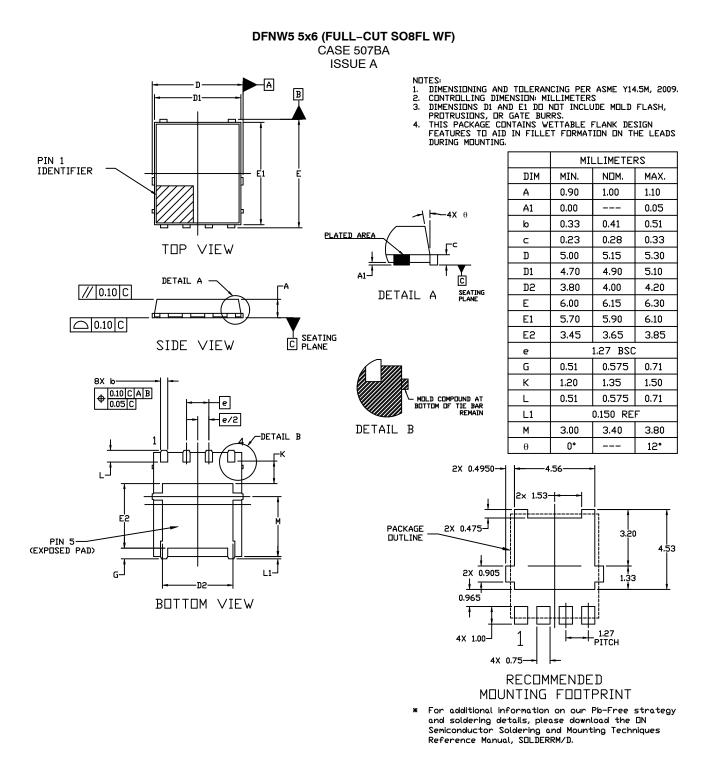

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 1 mA$	80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	${\Delta V_{(BR)DSS}}/{\Delta T_J}$	$I_D = 1$ mA, Referenced to 25°C		17.8		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 80 \text{ V}, \text{ T}_{\text{J}} = 25^{\circ}\text{C}$			1	μA
		$V_{DS} = 80 \text{ V}, \text{ T}_{\text{J}} = 125^{\circ}\text{C}$			250	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 20 V$			100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 50 A		1.24	1.43	mΩ
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 330 μ A	2.4		3.6	V
Gate Threshold Voltage Temperature Coefficient	ΔV _{GS(TH)} / ΔT _J	$V_{GS} = V_{DS}, I_D = 330 \ \mu A$		-7.32		mV/°C
Forward Transconductance	9 FS	V _{DS} = 5 V, I _D = 50 A		176		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE		•	•		
Input Capacitance	C _{ISS}			5880		pF
Output Capacitance	C _{OSS}			1690		1
Reverse Transfer Capacitance	C _{RSS}	V_{GS} = 0 V, V_{DS} = 40 V, f = 1 MHz		25		
Output Charge	Q _{OSS}			121		nC
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 6 \text{ V}, \text{ V}_{DD} = 40 \text{ V}; \text{ I}_{D} = 50 \text{ A}$		51		
Total Gate Charge	Q _{G(TOT)}			83		
Threshold Gate Charge	Q _{G(TH)}			18		
Gate-to-Source Charge	Q _{GS}	V _{GS} = 10 V, V _{DD} = 40 V; I _D = 50 A		27		
Gate-to-Drain Charge	Q _{GD}			13		
Gate Plateau Voltage	V _{GP}			4.6		V
Gate Resistance	R _G	f = 1 MHz		0.6		Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}			24		ns
Rise Time	t _r	Resistive Load,		10		
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 0/10 V, V_{DD} = 64 V, I _D = 50 A, R _G = 2.5 Ω		45		
Fall Time	t _f			9		
SOURCE-TO-DRAIN DIODE CHARACTE	ERISTICS					
Forward Diode Voltage	V _{SD}	V_{GS} = 0 V, I _S = 50 A, T _J = 25°C		0.81	1.2	V
		V_{GS} = 0 V, I _S = 50 A, T _J = 125°C	İ	0.66		1
Reverse Recovery Time	t _{RR}		İ	36		ns
Charge Time	t _a	$V_{CR} = 0 V_{LR} = 50 A_{LR}$		19		1
Discharge Time	t _b	V_{GS} = 0 V, I_S = 50 A, dl/dt = 1000 A/µs, V_{DD} = 64 V		18		1
Reverse Recovery Charge	Q _{RR}			290		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]		
NVMFWS1D5N08XT1G	1D5N08	DFNW5 (Pb-Free)	1500 / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** prod

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

BD442STU MC74LVX4245DWG MC78M05ACTG MC74LCX16244DTG KA7912ATU FQPF85N06 FQP4N80 MC78M15ACTG NLVVHC1G66DTT1G 2SA2012-TD-E MC74HC11ADTG FMBA14 NCP2823BFCT1G M74HCT4852ADTR2G MC34151P MC7818BTG MC78L08ACDG FDBL0150N80 FEBFL7733A_L53U021A MOC3042SM FPF2701MX FQD5N15TM FXLA104UM12X GF1B MUR3060WTG BS170_D74Z NCP1117DTAG NCV303LSN45T1G NCV551SN32T1G NDF04N60ZH NGTB10N60FG NL17SZ125DTT1G NLSX5014DR2G 1N5226B 1N5339B NSP8818MUTAG NTMFS6B05NT1G 1SMB5926BT3G 2SC3648T-TD-E ESD11N5.0ST5G FAN53600AUC33X FCP20N60 FDLL400 FDPC8016S FGH20N60SFDTU FGH40N60SFDTU SURA8220T3G FPF2124 FQD10N20CTM 2N5657G