NTR4503N, NVTR4503N

MOSFET - Power, Single, N-Channel, SOT-23

30 V, 2.5 A

Features

- Leading Planar Technology for Low Gate Charge / Fast Switching
- 4.5 V Rated for Low Voltage Gate Drive
- SOT-23 Surface Mount for Small Footprint (3 x 3 mm)
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb -Free and are RoHS Compliant

Applications

- DC-DC Conversion
- Load/Power Switch for Portables
- Load/Power Switch for Computing

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			$\mathrm{V}_{\text {DSS }}$	30	V
Gate-to-Source Voltage			V_{GS}	± 20	V
Continuous Drain Current (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	2.0	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		1.5	
	$\mathrm{t} \leq 10$ s	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.5	
Power Dissipation (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.73	W
Continuous Drain Current (Note 2)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{\text {D }}$	1.5	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		1.1	
Power Dissipation (Note 2)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.42	W
Pulsed Drain Current		$10 \mu \mathrm{~s}$	I_{DM}	10	A
Operating Junction and Storage Temperature			$\begin{aligned} & \mathrm{T}_{\mathrm{J},} \\ & \mathrm{~T}_{\mathrm{stg}} \end{aligned}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode)			Is	2.0	A
Peak Source Current (Diode Forward)		$\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	$\mathrm{I}_{\text {SM }}$	4.0	A
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on)}}$ TYP	ID MAX
30 V	$85 \mathrm{~m} \Omega$ @ 10 V	2.5 A
	$105 \mathrm{~m} \Omega$ @ 4.5 V	
N -Channel		

MARKING DIAGRAM/

SOT-23
CASE 318
STYLE 21

PIN ASSIGNMENT

TR3 = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NTR4503NT1G	SOT-23 (Pb-Free)	$3000 /$ Tape \& Reel
NVTR4503NT1G	SOT-23 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTR4503N, NVTR4503N

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$\mathrm{R}_{\theta \mathrm{\theta AA}}$	170	C / W
Junction-to-Ambient - t < 10 s (Note 1)	$\mathrm{R}_{\text {өJA }}$	100	
Junction-to-Ambient - Steady State (Note 2)	$\mathrm{R}_{\theta \mathrm{JJA}}$	300	

1. Surface-mounted on FR4 board using 1 in sq pad size.
2. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	30	36		V
Zero Gate Voltage Drain Current	IDSS	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=24 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$			10	
Gate-to-Source Leakage Current	IGSS	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 100	nA

ON CHARACTERISTICS (Note 3)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1.0	1.75	3.0	V
Drain-to-Source On-Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$		85	110	$\mathrm{~m} \Omega$
		$\mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$		105	140	
Forward Transconductance	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$		5.3		S

CHARGES AND CAPACITANCES

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} \end{gathered}$	135		pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		52		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		15		
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{DS}}=24 \mathrm{~V} \end{gathered}$	130	250	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		42	75	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		13	25	
Total Gate Charge	$\mathrm{Q}_{\mathrm{G} \text { (TOT) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \end{gathered}$	3.6	7.0	nC
Threshold Gate Charge	$Q_{G(T H)}$		0.3		
Gate-to-Source Charge	$Q_{G S}$		0.6		
Gate-to-Drain Charge	$Q_{G D}$		0.7		
Total Gate Charge	$\mathrm{Q}_{\mathrm{G} \text { (TOT) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=24 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \end{gathered}$	1.9		nC
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$		0.3		
Gate-to-Source Charge	$Q_{G S}$		0.6		
Gate-to-Drain Charge	$Q_{G D}$		0.9		

SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=6 \Omega \end{gathered}$	5.8	12	ns
Rise Time	t_{r}		5.8	10	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		14	25	
Fall Time	t_{f}		1.6	5.0	
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=24 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=2.5 \Omega \end{gathered}$	4.8		ns
Rise Time	t_{r}		6.7		
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		13.6		
Fall Time	t_{f}		1.8		

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~A}$		0.85	1.2
Reverse Recovery Time	t_{RR}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~A}$,			
Reverse Recovery Charge	$\mathrm{dI}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
4. Switching characteristics are independent of operating junction temperatures.

NTR4503N, NVTR4503N

TYPICAL PERFORMANCE CURVES

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTR4503N, NVTR4503N

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 7. Capacitance Variation

R_{G}, GATE RESISTANCE (OHMS)
Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 10. Diode Forward Voltage vs. Current

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

