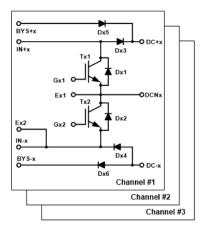
onsemi

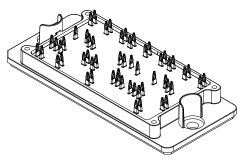
Si/SiC Hybrid Module – EliteSiC, 3 Channel Symmetric Boost 1000 V, 150 A IGBT, 1200 V, 30 A SiC Diode, Q2 Package

NXH450B100H4Q2F2, NXH450B100H4Q2F2PG-R

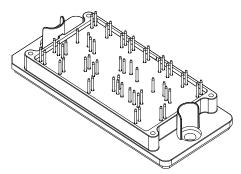
Description

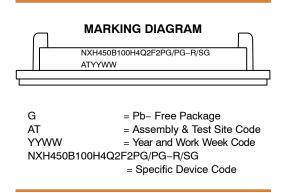

The NXH450B100H4Q2 is a Si/SiC Hybrid three channel symmetric boost module. Each channel contains two 1000 V, 150 A IGBTs, two 1200 V, 30 A SiC diodes and two 1600 V, 30 A bypass diodes. The module contains an NTC thermistor.

Features


- Silicon/SiC Hybrid Technology Maximizes Power Density
- Low Switching Loss Reduces System Power Dissipation
- Low Inductive Layout
- Press-fit and Solder Pin Options
- This Device is Pb-Free, Halogen Free and is RoHS Compliant

Typical Applications


- Solar Inverter
- Uninterruptible Power Supplies



Q2BOOST 3-CHANNEL PRESS FIT PINS CASE 180BG

Q2BOOST 3-CHANNEL SOLDER PINS CASE 180BR

PIN CONNECTIONS

See details pin connections on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

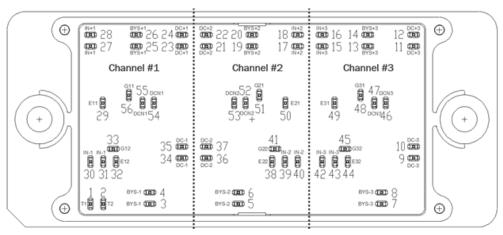


Figure 2. Pins Assignments

ABSOLUTE MAXIMUM RATINGS (Note 1) (T_j = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
IGBT (Tx1, Tx2)			
Collector-Emitter Voltage	V _{CES}	1000	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (Tpulse = 5 μs, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current (@ V _{GE} = 20 V, T _c = 80°C)	Ι _C	101	А
Pulsed Peak Collector Current @ Tc = $80^{\circ}C$ (T _J = $150^{\circ}C$)	I _{C(Pulse)}	303	А
Power Dissipation (T _C = 80°C, T _J = 150°C)	P _{tot}	234	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature (Note 2)	T _{JMAX}	150	°C
IGBT INVERSE DIODE (Dx1, Dx2) AND BYPASS DIODE (Dx5, Dx6)			
Peak Repetitive Reverse Voltage	V _{RRM}	1600	V
Continuous Forward Current @ $T_C = 80^{\circ}C$	١ _F	36	А
Repetitive Peak Forward Current (T _J = 150°C, T _J limited by T _{Jmax})	I _{FRM}	108	А
Maximum Power Dissipation @ T_C = 80°C (T_J = 150°C)	P _{tot}	79	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
SILICON CARBIDE SCHOTTKY DIODE (Dx3, Dx4)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C	I _F	36	А
Repetitive Peak Forward Current (T _J = 150°C, T _J limited by T _{Jmax})	I _{FRM}	108	А
Maximum Power Dissipation @ T_C = 80°C (T_J = 150 °C)	P _{tot}	104	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

2. Qualification at 175°C per discrete TO247.

THERMAL AND INSULATION PROPERTIES (Note 3) (T_j = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
THERMAL PROPERTIES			
Operating Temperature under Switching Condition	T _{VJOP}	–40 to (Tjmax – 25)	°C
Storage Temperature Range	T _{stg}	-40 to 125	°C
THERMAL PROPERTIES			
Isolation Test Voltage, t = 2 sec, 50 Hz (Note 4)	V _{is}	4000	V _{RMS}
Creepage Distance		12.7	Mm
Comparative Tracking Index	СТІ	>600	

3. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.
4. 4000 VAC_{RMS} for 1 second duration is equivalent to 3333 VAC_{RMS} for 1 minute duration.

ELECTRICAL CHARACTERISTICS (Note 5) ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (Tx1, Tx2)						
Collector-Emitter Breakdown Voltage	V_{GE} = 0 V, I _C =2 mA	V _{(BR)CES}	1000	-	-	V
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 150 A, T _C = 25°C			1.70	2.25	V
	V_{GE} = 15 V, I _C = 150 A, T _C = 150°C		-	2.03	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 150 \text{ mA}$	V _{GE(TH)}	4.1	4.66	5.7	V
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1000 V	I _{CES}	-	-	600	μA
Gate Leakage Current	V_{GE} = ±20 V, V_{CE} = 0 V	I _{GES}	-	-	±800	nA
Turn-On Delay Time	T _j = 25°C V _{CE} = 600 V, I _C = 50 A	t _{d(on)}	-	28	-	ns
Rise Time	$V_{GE} = -8 V$, +15 V, $R_{G} = 4 \Omega$	t _r	-	10	-	-
Turn-Off Delay Time		t _{d(off)}	-	157	-	
Fall time		t _f	-	22	-	
Turn on Switching Loss		E _{on}	-	403	-	μJ
Turn off Switching Loss		E _{off}	-	1651	-	
Turn–On Delay Time	T _j = 125°C V _{CE} = 600 V, I _C = 50 A	t _{d(on)}	-	27	-	ns
Rise Time	$V_{GE} = -8 V$, +15 V, $R_{G} = 4 \Omega$	t _r	-	12	_	
Turn–Off Delay Time		t _{d(off)}	-	192	-	
Fall time		t _f	-	32	-	
Turn on Switching Loss		E _{on}	-	594	-	μJ
Turn off Switching Loss		E _{off}	-	2138	_	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{ies}	-	9342	_	pF
Output Capacitance		C _{oes}	-	328	_	
Reverse Transfer Capacitance		C _{res}	-	52	_	
Gate Charge	$V_{CE} = 600 \text{ V}, \text{ V}_{GE} = 15 \text{ V},$ $I_{C} = 75 \text{ A}$	Qg	-	252	_	nC
Thermal Resistance – Chip-to-Heatsink	Thermal grease,	R _{thJH}	-	0.45	-	K/W
Thermal Resistance - Chip-to-Case	Thickness = 2.1 Mil \pm 2% λ = 2.9 W/mK	R _{thJC}	-	0.30	_	K/W
GBT INVERSE DIODE (Dx1, Dx2) AND BYPA	ASS DIODE (Dx5, Dx6)					
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	-	1.04	1.7	V
	I _F = 30 A, T _J = 150°C		-	0.94	-	
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ± 2%	R _{thJH}	-	1.09	-	K/W
Thermal Resistance - Chin-to-Case	$\lambda = 2.9 \text{ W/mK}$	P e	1	0.80	1	KVV

K/W

_

R_{thJC}

0.89

_

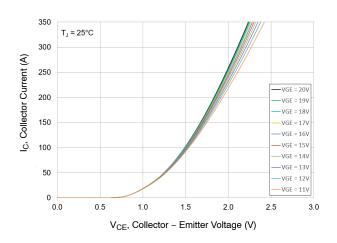
 $\lambda = 2.9 \text{ W/mK}$

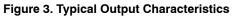
Thermal Resistance - Chip-to-Case

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC DIODE (Dx3, Dx4)						
Diode Reverse Leakage Current	V _R = 1200 V, T _J = 25°C	I _R	-	-	600	μA
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	-	1.42	1.7	V
	I _F = 30 A, T _J = 150°C	$I_{\rm F} = 30 \text{ A}, \text{ T}_{\rm J} = 150^{\circ}\text{C}$		1.85	-	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	-	20	-	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V}, \text{ I}_{C} = 50 \text{ A}$ $V_{GF} = -8 \text{ V}, 15 \text{ V}, \text{ R}_{G} = 4 \Omega$	Q _{rr}	-	88	_	nC
Peak Reverse Recovery Current		I _{RRM}	-	10	_	А
Peak Rate of Fall of Recovery Current		di/dt	-	4200	_	A/μs
Reverse Recovery Energy		E _{rr}	-	38	_	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	19	_	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V}, \text{ I}_{C} = 50 \text{ A}$ $V_{GE} = -8 \text{ V}, 15 \text{ V}, \text{ R}_{G} = 4 \Omega$	Q _{rr}	-	87	_	nC
Peak Reverse Recovery Current		I _{RRM}	-	9	_	А
Peak Rate of Fall of Recovery Current		di/dt	-	3154	_	A/μs
Reverse Recovery Energy		E _{rr}	-	35	-	μJ
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ± 2%	R _{thJH}	-	0.97	_	K/W
Thermal Resistance - Chip-to-Case	$\lambda = 2.9 \text{ W/mK}$	Rt _{hJC}	-	0.67	_	K/W

THERMISTOR CHARACTERISTICS

Nominal Resistance		R ₂₅	-	22	-	kΩ
Nominal Resistance	T = 100°C	R ₁₀₀	-	1486	-	Ω
Deviation of R25		$\Delta R/R$	-5	-	5	%
Power Dissipation		PD	-	200	-	mW
Power Dissipation Constant			-	2	-	mW/K
B-Value	B (25/50), tolerance $\pm 3\%$		-	3950	-	К
B-Value	B (25/100), tolerance ±3%		-	3998	-	К


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


5. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

PACKAGE MARKING AND ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
,	NXH450B100H4Q2F2PG, NXH450B100H4Q2F2PG-R	Q2BOOST – Case 180BG (Pb-Free and Halide-Free Press Fit Pins)	12 Units / Blister Tray
NXH450B100H4Q2F2SG SOLDER PINS	NXH450B100H4Q2F2SG	Q2BOOST – Case 180BR (Pb–Free and Halide–Free Solder Pins)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE

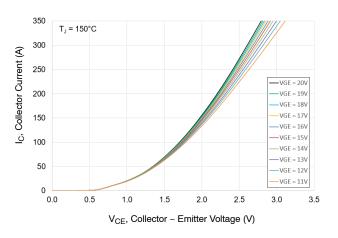


Figure 4. Typical Output Characteristics

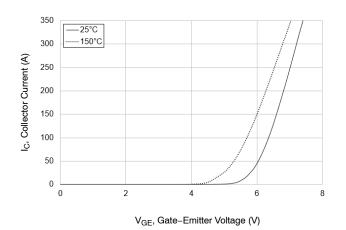
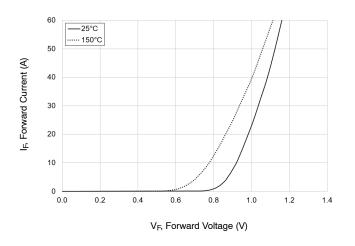
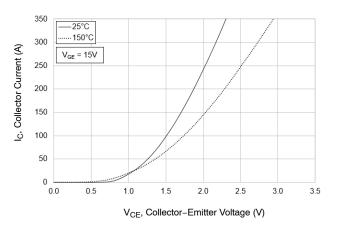
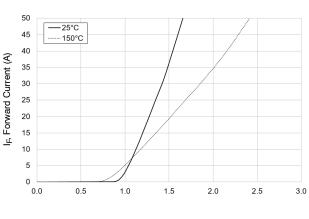
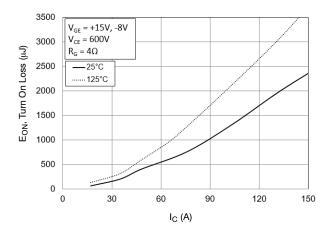
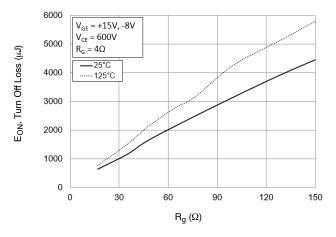



Figure 5. Transfer Characteristics


Figure 6. Typical Saturation Voltage Characteristics


V_F, Forward Voltage (V)

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (CONTINUED)

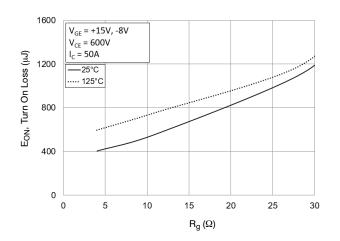
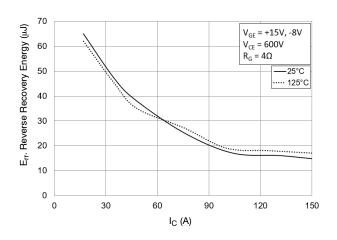



Figure 11. Typical Turn On Loss vs. R_G

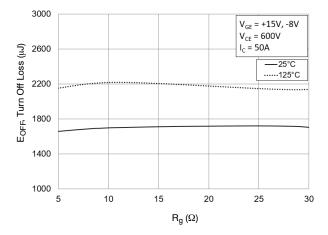
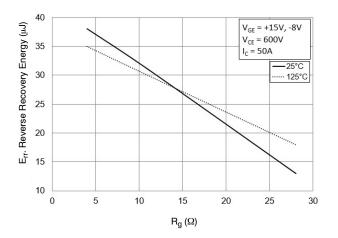
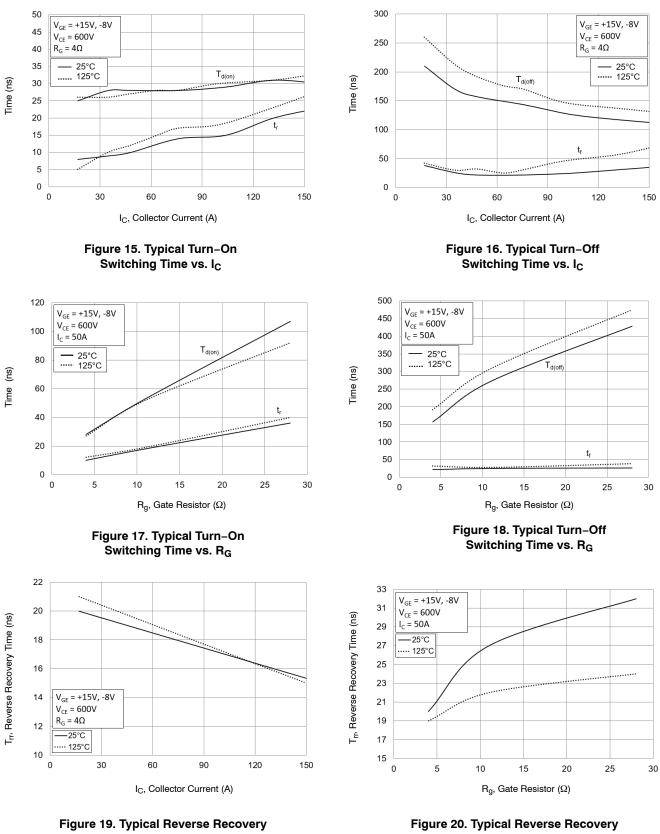
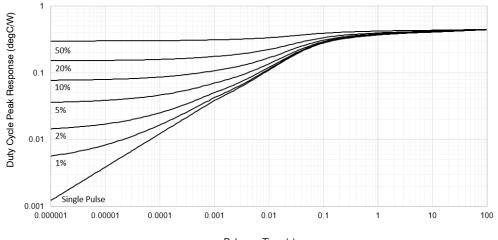




Figure 12. Typical Turn Off Loss vs. R_G



TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (CONTINUED)

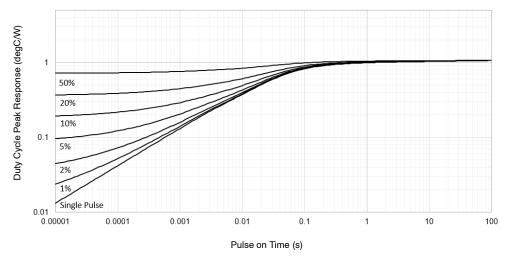
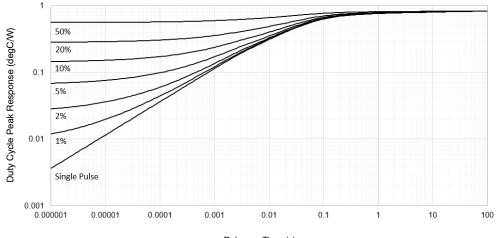

Energy Loss vs. I_C

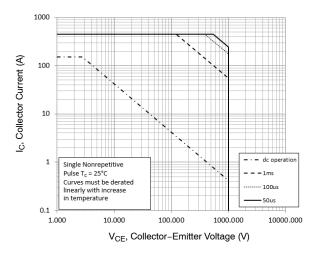
TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (CONTINUED)

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (CONTINUED)

Pulse on Time (s)

Figure 27. Transient Thermal Impedance – IGBT


Figure 28. Transient Thermal Impedance – Inverse Diode

Pulse on Time (s)

Figure 29. Transient Thermal Impedance – Boost Diode

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND BOOST DIODE (CONTINUED)

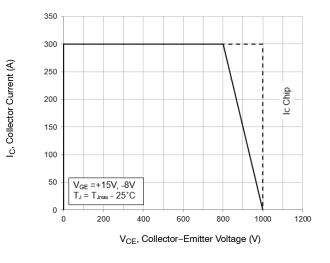
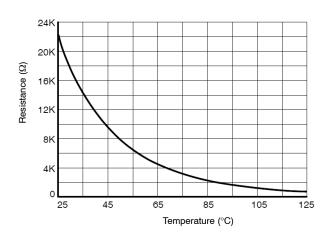
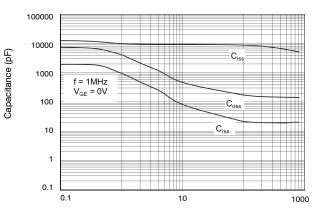
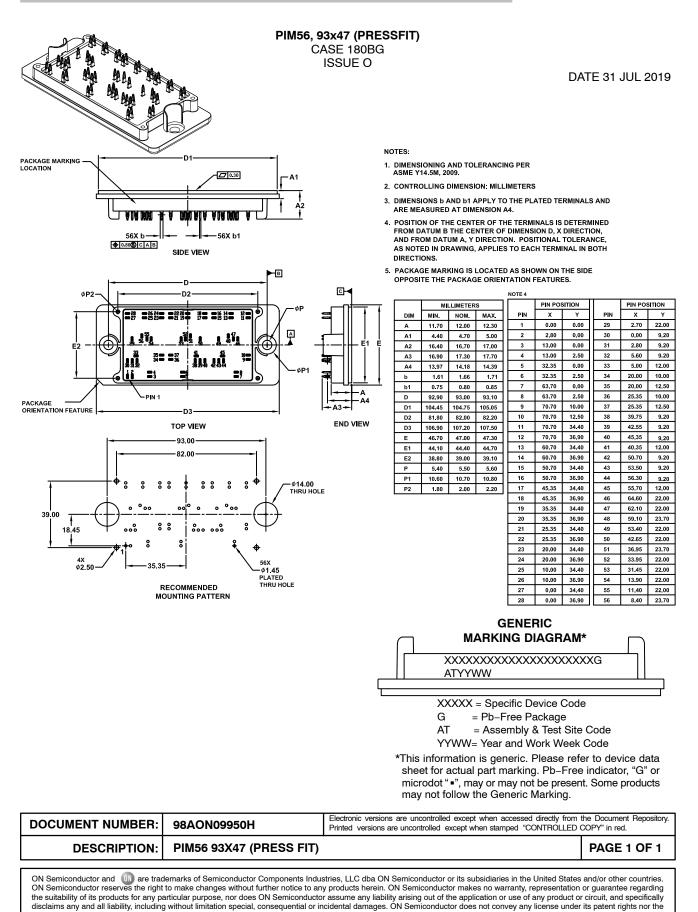


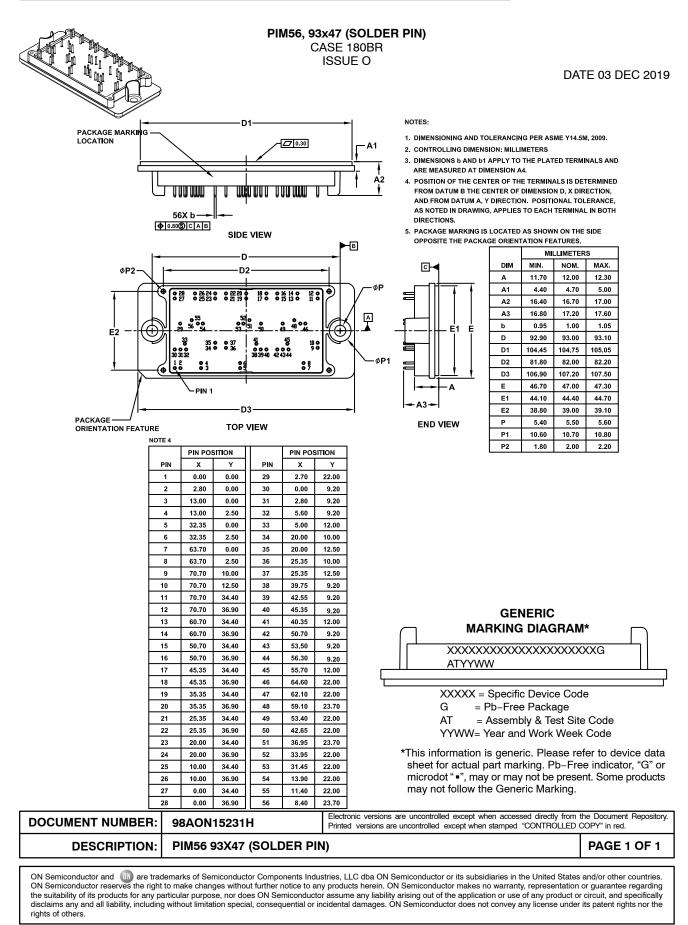
Figure 31. Reverse Safe Operating Area

Figure 32. Gate Voltage vs. Gate Charge


Figure 34. NTC Characteristics

V_{CE}, Collector to Emitter Voltage (V)


Figure 33. Capacitance Charge

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 F3L400R07ME4_B22
 F3L400R12PT4_B26
 FB20R06W1E3_B11
 FD300R12KE3
 FD300R12KS4_B5
 FD400R12KE3
 FF100R12KE3

 FF150R12KE3G
 FF200R06KE3
 FF200R06YE3
 FF300R06KE3_B2
 FF600R12IP4V
 FF800R17KP4_B2
 FF900R12IE4V

 FP06R12W1T4_B3
 FP100R07N3E4
 FP100R07N3E4_B11
 FP10R06W1E3_B11
 FP10R12W1T4_B11
 FP10R12YT3
 FP15R12YT3

 FP15R12YT3
 FP20R06W1E3
 FP40R12KT3G
 FP75R06KE3
 FS10R12YE3
 FS150R07PE4
 FS150R12PT4

 FS150R17N3E4_B11
 FS20R06W1E3_B11
 FS30R06W1E3_B11
 FS75R12KE3G
 FS75R12W2T4_B11
 FZ1600R17HP4_B2

 FZ300R12KE3G
 FZ400R17KE3
 FZ400R17KE4
 FZ600R65KE3
 DF1000R17IE4D_B2
 APTGT75DA60T1G
 DZ800S17K3
 F12

 25R12KT4G
 F31200R12W2H3_B11
 F31300R12ME4_B22
 F3175R07W2E3_B11
 F4-150R12KS4
 F475R07W1H3B11ABOMA1

 FD1400R12IP4D
 FD400R12KE3_B5
 FD400R12KE3_B5
 F475R07W1H3B11ABOMA1