NZ23C5V6ALT1G

24 Watt Peak Power Zener Transient Voltage Suppressors
 SOT-23 Dual Common Anode Zeners for ESD Protection

This dual monolithic silicon Zener diodes is designed for applications requiring transient overvoltage protection capability. This is intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. The dual junction common anode design protects two separate lines using only one package. This device is ideal for situations where board space is at a premium.

Features

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range - 3 V
- Standard Zener Breakdown Voltage Range - 5.6 V
- Peak Power - 24 W @ 1.0 ms (Unidirectional), per Figure 5 Waveform
- ESD Rating:
- Class 3B (> 16 kV) per the Human Body Model
- Class C (> 400 V) per the Machine Model
- Maximum Clamping Voltage @ Peak Pulse Current
- Low Leakage < $0.1 \mu \mathrm{~A}$
- Flammability Rating UL 94 V-0
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics

CASE: Void-free, transfer-molded, thermosetting plastic case
FINISH: Corrosion resistant finish, easily solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
Package designed for optimal automated board assembly
Small package size for high density applications
Available in 8 mm Tape and Reel

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOT-23
CASE 318
STYLE 12

5V6 = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NZ23C5V6ALT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DEVICE MARKING INFORMATION
See specific marking information in the device marking column of the table on page 2 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1) @ $\mathrm{T}_{\mathrm{L}} \leq 25^{\circ} \mathrm{C}$	P_{pk}	24	W
Total Power Dissipation on FR-5 Board (Note 2) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	225	mW
Derate above $25^{\circ} \mathrm{C}$		1.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Power Dissipation on Alumina Substrate (Note 3) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	300	mW
Derate above $25^{\circ} \mathrm{C}$		2.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature - Maximum (10 Second Duration)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 5 and derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ per Figure 6 .
2. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.62$ in.
3. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in}, 99.5 \%$ alumina.
*Other voltages may be available upon request.

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ I_{PP}
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current $@ \mathrm{~V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage $@ \mathrm{I}_{\mathrm{T}}$
I_{T}	Test Current
$\Theta \mathrm{V}_{\mathrm{BR}}$	Maximum Temperature Coefficient of V_{BR}
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}
Z_{ZT}	Maximum Zener Impedance @ I_{ZT}
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I_{ZK}

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)
($\left.\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V} \operatorname{Max} @ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$

Device	Device Marking	$\frac{\mathrm{V}_{\mathrm{RWM}}}{\text { Volts }}$	$\frac{\begin{array}{c} \mathrm{I}_{\mathrm{R}} @ \\ \mathrm{~V}_{\mathrm{RWM}} \end{array}}{\mu \mathrm{~A}}$	Breakdown Voltage				Max Zener Impedance (Note 5)			V_{C} @ I_{PP} (Note 6)		$\Theta V_{B R}$
				$\mathrm{V}_{\text {BR }}$ (Note 4) (V)			$\frac{@ \mathbf{I}_{\mathbf{T}}}{\mathrm{mA}}$	$\begin{gathered} \mathrm{z}_{\mathrm{zT}} \\ @ \\ 20 \mathrm{~mA} \end{gathered}$	Z_{zk} @ I_{zk}		V_{c}	IPP	
				Min	Nom	Max		Ω	Ω	mA	V	A	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
NZ23C5V6ALT1G	5V6	1.0	0.1	5.2	5.6	6.0	5.0	11	1600	0.25	8.0	3.0	1.26

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. $V_{B R}$ measured at pulse test current I_{T} at an ambient temperature of $25^{\circ} \mathrm{C}$.
5. Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for $\mathrm{I}_{\mathrm{Z}(\mathrm{AC})}$ $=0.1 \mathrm{I}_{\mathrm{Z}(\mathrm{DC})}$, with the AC frequency $=1.0 \mathrm{kHz}$
6. Surge current waveform per Figure 5 and derate per Figure 6

Figure 1. Typical Breakdown Voltage versus Temperature
(Upper curve is bidirectional mode, lower curve is unidirectional mode)

Figure 2. Typical Leakage Current versus Temperature

Figure 3. Typical Capacitance versus Bias Voltage
(Upper curve is unidirectional mode, lower curve is bidirectional mode)

Figure 4. Steady State Power Derating Curve

Figure 5. Pulse Waveform

Figure 7. Maximum Non-repetitive Surge Power, P_{pk} versus PW
Power is defined as $V_{R S M} \times I_{z}(p k)$ where $V_{R S M}$ is the clamping voltage at $\mathrm{I}_{\mathrm{z}}(\mathrm{pk})$.

Figure 6. Pulse Derating Curve

Figure 8. Maximum Non-repetitive Surge Power, P_{pk} (NOM) versus PW
Power is defined as $\mathrm{V}_{\mathrm{Z}}(\mathrm{NOM}) \times \mathrm{I}_{\mathrm{Z}}(\mathrm{pk})$ where $\mathrm{V}_{\mathrm{Z}}(\mathrm{NOM})$ is the nominal Zener voltage measured at the low test current used for voltage classification.

NZ23C5V6ALT1G

TYPICAL COMMON ANODE APPLICATIONS

A quad junction common anode design in a SOT-23 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially
when board space is at a premium. Two simplified examples of TVS applications are illustrated below.

Computer Interface Protection

Microprocessor Protection

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

