VGA Port Companion Circuit

Product Description

The PACVGA201 provides seven channels of ESD protection for all signal lines commonly found in a VGA port. ESD protection is implemented with current-steering diodes designed to safely handle the high surge currents encountered with IEC-61000-4-2 Level-4 ESD Protection (±8 kV contact discharge). When a channel is subjected to an electrostatic discharge, the ESD current pulse is diverted via the protection diodes into the positive supply rail or ground where it may be safely dissipated.

Separate positive supply rails are provided for the VIDEO, DDC_OUT and SYNC channels to facilitate interfacing with low-voltage video controller ICs and to provide design flexibility in multiple-supply-voltage environments.

An internal diode (D₁, in schematic below) is provided such that V_{CC2} is derived from V_{CC3} (V_{CC2} does not require an external power supply input). In applications where V_{CC3} may be powered down, diode D₁ blocks any DC current path from the DDC OUT pins back to the powered down V_{CC3} rail via the upper ESD protection diodes.

Two non-inverting drivers provide buffering for the HSYNC and VSYNC signals from the Video Controller IC (SYNC IN1, SYNC IN2). These buffers accept TTL input levels and convert them to CMOS output levels that swing between Ground and V_{CC3}.

When the PWR UP input is driven LOW, the SYNC outputs are driven LOW and the SYNC inputs can float: no current will be drawn from the V_{CC3} supply.

The PACVGA201 is housed in a 16-pin QSOP package with RoHS compliant lead-free finishing.

Features

- Seven Channels of ESD Protection for All VGA Port Connector Pins
- Meets IEC-61000-4-2 Level-4 ESD Requirements (±8 kV Contact Discharge)
- Very Low Loading Capacitance from ESD Protection Diodes on VIDEO Lines, 4pF Typical
- TTL to CMOS Level-Translating Buffers with Power Down Mode for HSYNC and VSYNC Lines
- Three Power Supplies for Design Flexibility
- Compact 16–Pin QSOP Package
- These Devices are Pb–Free and are RoHS Compliant

Applications

- ESD Protection and Termination Resistors for VGA (Video) Port Interfaces
- Desktop PCs
- Notebook Computers
- LCD Monitors

ON Semiconductor®

http://onsemi.com

OSOP16 **QR SUFFIX CASE 492**

MARKING DIAGRAM

= Work Week

YY

G

WW

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
PACVGA201QR	QSOP16 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SIMPLIFIED ELECTRICAL SCHEMATIC

PACKAGE / PINOUT DIAGRAMS

Table 1. PIN DESCRIPTIONS

Pin(s)	Name	Description
1	V _{CC3}	V_{CC3} supply pin. This is an isolated supply input for the two sync buffers and SD1 and SD2 ESD protection circuits.
2	V _{CC1}	V _{CC1} supply pin. This is an isolated supply pin for the VIDEO_1, VIDEO_2 and VIDEO_3 ESD protection circuits.
3	VIDEO_1	Video signal ESD protection channel. This pin is typically tied one of the video lines between the VGA controller device and the video connector.
4	VIDEO_2	Video signal ESD protection channel. This pin is typically tied one of the video lines between the VGA controller device and the video connector.
5	VIDEO_3	Video signal ESD protection channel. This pin is typically tied one of the video lines between the VGA controller device and the video connector.
6	GND	Ground reference supply pin.
7	PWR_UP	Enables the sync buffers when high. When PWR_UP is low the sync outputs are forced low and the inputs can be floated.
8	V _{CC2}	V_{CC2} supply pin. This is an isolated supply pin for the DDC_OUT1 and DDC_OUT2 ESD protection circuits. Internally, V_{CC2} is derived from the V_{CC3} input if the V_{CC2} input is not connected to a supply voltage.
9	DDC_OUT1	DDC_OUT1 ESD protection channel.
10	DDC_OUT2	DDC_OUT2 ESD protection channel.
11	SYNC_IN1	Sync signal buffer input. Connects to the VGA Controller side of one of the sync lines.
12	SYNC_OUT1	Sync signal buffer output. Connects to the video connector side of one of the sync lines.
13	SYNC_IN2	Sync signal buffer input. Connects to the VGA Controller side of one of the sync lines.
14	SYNC_OUT2	Sync signal buffer output. Connects to the video connector side of one of the sync lines.
15	SD1	ESD protection channel input.
16	SD2	ESD protection channel input.

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
V _{CC1} , V _{CC2} and V _{CC3} Supply Voltage Inputs	[GND – 0.5] to +6.0	V
Diode Forward Current (One Diode Conducting at a Time)	20	mA
DC Voltage at Inputs VIDEO_1, VIDEO_2, VIDEO_3 DDC_OUT1, DDC_OUT2 SYNC_IN1, SYNC_IN2	[GND – 0.5] to [V _{CC1} + 0.5] [GND – 0.5] to [V _{CC2} + 0.5] [GND – 0.5] to [V _{CC3} + 0.5]	V
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-65 to +150	°C
Package Power Rating	750	mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

SPECIFICATIONS (Cont'd)

Table 3. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
I _{CC1}	V _{CC1} Supply Current	V _{CC1} = 5.0 V			10	μA
I _{CC3}	V _{CC3} Supply Current	V_{CC3} = 5 V, SYNC Inputs at GND or V_{CC3} , PWR_UP pin at V_{CC3} , SYNC Outputs Unloaded		10		μΑ
		V_{CC3} = 5 V, SYNC Inputs at 3.0 V, PWR_UP Pin at V _{CC3} , SYNC Outputs Unloaded		200		μΑ
		V _{CC3} = 5 V, PWR_UP Input at GND, SYNC Outputs Unloaded			10	μΑ
V _{CC2}	V _{CC2} Pin Open Circuit Voltage	V _{CC2} Voltage Internally Derived from V _{CC3} via Diode D1, No External Current Drawn		[V _{CC3} – 0.80]		V
V _{IH}	Logic High Input Voltage	V _{CC3} = 5 V (Note 2)	2.0			V
VIL	Logic Low Input Voltage	V _{CC3} = 5 V (Note 2)			0.8	V
V _{OH}	Logic High Output Voltage	I _{OH} = -4 mA, V _{CC3} = 5.0 V (Note 3)	4.4			V
V _{OL}	Logic Low Output Voltage	I _{OL} = 4 mA, V _{CC3} = 5.0 V (Note 3)			0.4	V
$R_{B,}R_{P}$	Resistor Value	PWR_UP = V _{CC3} = 5.0 V	0.5	1	2	MΩ
I _{IN}	Input Current VIDEO_x Pins HSYNC, VSYNC Pins	$\begin{array}{l} V_{CC1} = 5.0 \text{ V}, V_{IN} = V_{CC1} \text{ or GND} \\ V_{CC3} = 5.0 \text{ V}, V_{IN} = V_{CC3} \text{ or GND} \end{array}$			±1 ±1	μΑ
C _{IN}	Input Capacitance on VIDEO_1, VIDEO_2 and VIDEO_3 Pins	$\label{eq:V_CC1} \begin{array}{l} v_{CC1} = 5.0 \; V, \; V_{IN} = 2.5 \; V, \\ \text{Measured at 1 MHz} \\ V_{CC1} = 2.5 \; V, \; V_{IN} = 1.25 \; V, \\ \text{Measured at 1 MHz} \end{array}$		4 4.5		pF
t _{PLH}	SYNC Buffer L \ge H Propagation Delay	C_L = 50 pF, V_{CC3} = 5.0 V, Input t_R and t_F \leq 5 ns		8	12	ns
t _{PHL}	SYNC Buffer H ≥ L Propagation Delay	C_L = 50 pF, V_{CC3} = 5.0 V, Input t_R and $t_F \leq 5 \mbox{ ns}$		8	12	ns
t _{R,} t _F	SYNC Buffer Output Rise & Fall Times	C_L = 50 pF, V_{CC3} = 5.0 V, Input t_R and $t_F \leq 5 \mbox{ ns}$		7.0		ns
V _{ESD}	ESD Withstand Voltage	$V_{CC1} = V_{CC2} = V_{CC3} = 5 \text{ V (Note 4)}$	±8			kV

 All parameters specified over standard operating conditions unless otherwise noted.
These parameters apply only to SYNC_IN1, SYNC_IN2 and PWR_UP.
These parameters apply only to SYNC_OUT1 and SYNC_OUT2.
Per the IEC-61000-4-2 International ESD Standard, Level 4 contact discharge method. V_{CC1}, V_{CC2} and V_{CC3} must be bypassed to GND via a low impedance ground plane with a 0.2 µF or greater, low inductance, chip ceramic capacitor at each supply pin. ESD pulse is applied between the applicable pins and GND. ESD pulse can be positive or negative with respect to GND. Applicable pins are: VIDEO_1, VIDEO_2, VIDEO_3, SYNC_OUT1, SD1, SYNC_OUT2, SD2, DDC_OUT1 and DDC_OUT2. All other pins are ESD protected to the industry standard 2 kV per the Human Body model (MIL-STD-883, Method 3015).

APPLICATION INFORMATION

VF** – VIDEO EMI Filter SF** – SYNC EMI Filter

Figure 1. Typical Connection Diagram

A resistor may be necessary between the V_{CC2} pin and ground if protection against a stream of ESD pulses is required while the PACVGA201 is in the power-down state. The value of this resistor should be chosen such that the extra charge deposited into the V_{CC2} bypass capacitor by each ESD pulse will be discharged before the next ESD pulse occurs. The maximum ESD repetition rate specified by the IEC-61000-4-2 standard is one pulse per second. When the PACVGA201 is in the power-up state, an internal discharge resistor is connected to ground via a FET switch for this purpose.

For the same reason, V_{CC1} and V_{CC3} may also require bypass capacitor discharging resistors to ground if there are no other components in the system to provide a discharge path to ground.

to device data sheet for actual part marking. Pb–Free indicator, "G", may or not be present.

DOCUMENT NUMBER:	98AON04472D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	QSOP16		PAGE 1 OF 1	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.				

0.635

PITCH

DIMENSIONS: MILLIMETERS

onsemi, OnSemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 82350120560 82356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A