General Purpose Peak EMI Reduction IC

Functional Description

PCS3P7303A is a versatile, 3.3 V / 2.5 V Peak EMI reduction IC based on TIMING SAFE™ technology. PCS3P7303A accepts an input clock either from a Crystal or from an external reference (AC or DC coupled to XIN / CLKIN) and locks on to it delivering a 1x modulated clock output. PCS3P7303A has a Frequency Selection (FS) control that facilitates selecting one of the two frequency ranges within the operating frequency range. Refer to the *Frequency Selection* Table for details.

PCS3P7303A has an SSEXTR pin to select different deviations depending upon the value of an external resistor connected between SSEXTR and GND. Modulation Rate (MR) control selects two different Modulation Rates.

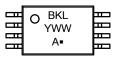
PPCS3P7303A operates from a 3.3 V / 2.5 V supply and is available in an 8–pin TSSOP and 8L 2 mm x 2 mm WDFN packages.

Application

PCS3P7303A is targeted for many applications including USB and SATA.

General Features

- 1x LVCMOS Peak EMI Reduction
- Input Frequency:
 - 10 MHz 70 MHz @ 2.5 V
 - 10 MHz 80 MHz @ 3.3 V
- Output Frequency:
 - 10 MHz 70 MHz @ 2.5 V
 - 10 MHz 80 MHz @ 3.3 V
- Analog Deviation Selection
- ModRate Selection Option
- Supply Voltage: $2.5 \text{ V} \pm 0.2 \text{ V}$ $3.3 \text{ V} \pm 0.3 \text{ V}$
- 8-pin TSSOP, 8L 2 mm x 2 mm WDFN (TDFN) Packages
- The First True Drop-in Solution
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

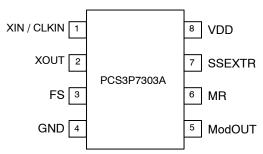


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

TSSOP8 4.4x3 CASE 948AL


WDFN8 2x2, 0.5P CASE 511AQ

XX = Specific Device Code

M = Date Code
YY, Y = Year
WW, W = Work Week
A = Assembly Location
• Pb-Free Device

(Note: Microdot may be in either location)

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

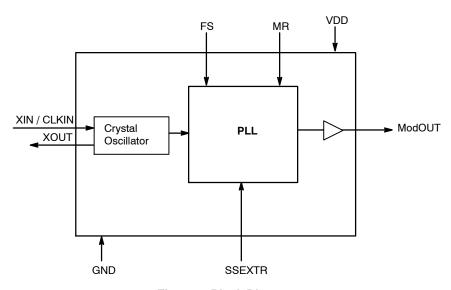


Figure 1. Block Diagram

Table 1. PIN DESCRIPTION

Pin#	Pin Name	Type	Description
1	XIN / CLKIN	Input	Crystal connection or External reference clock input.
2	XOUT	Output	Crystal connection. If using an external reference, this pin should be left open.
3	FS	Input	Frequency Select. Pull LOW to select Low Frequency range. Selects High Frequency range when pulled HIGH. Has an internal pull-up resistor. (See <i>Frequency Selection table</i> for details.)
4	GND	Power	Ground.
5	ModOUT	Output	Buffered Modulated clock output.
6	MR	input	Modulation Rate Select. When LOW selects Low Modulation Rate. Selects High Modulation Rate when pulled HIGH. Has an internal pull-down resistor.
7	SSEXTR	Input	Analog Deviation Selection through external resistor to GND.
8	VDD	Power	2.5 V / 3.3 V supply Voltage.

Table 2. FREQUENCY SELECTION TABLE

VDD (V)	FS	Frequency (MHz)
0.5	0	10 – 35
2.5	1	30 – 70
3.3	0	10 – 40
	1	30 – 80

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Rating	Unit
VDD, V _{IN}	Voltage on any input pin with respect to Ground	-0.5 to +4.6	V
T _{STG}	Storage temperature	-65 to +125	°C
T _s	Max. Soldering Temperature (10 sec)	260	°C
T _J	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. OPERATING CONDITIONS

Parameter	Description	Min	Max	Unit
VDD	Supply Voltage	2.3	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-25	+85	°C
C _L	Load Capacitance		10	pF
C _{IN}	Input Capacitance		7	pF

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. DC ELECTRICAL CHARACTERISTICS FOR 2.5 V

Parameter	Description	Test	Conditions	Min	Тур	Max	Units
VDD	Supply Voltage				2.5	2.7	V
V _{IL}	Input LOW Voltage					0.7	V
V _{IH}	Input HIGH Voltage			1.7			V
I _{IL}	Input LOW Current	V _{IN} = 0 V				-50	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$				50	μΑ
V _{OL}	Output LOW Voltage	I _{OL} = 8 mA	I _{OL} = 8 mA			0.6	V
V _{OH}	Output HIGH Voltage	I _{OH} = -8 mA		1.8			V
I _{CC}	Static Supply Current	XIN / CLKIN pu	lled low			500	μΑ
I _{DD}	Dynamic Supply Current	Unloaded	FS = 0; @ 10 MHz			5	mA
		Output	FS = 1; @ 70 MHz			12	
Z _O	Output Impedance				45		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 6. SWITCHING CHARACTERISTICS FOR 2.5 V

Parameter		Test Condition	s	Min	Тур	Max	Units
Input Frequency (Note 1) /	FS = 0			10		35	MHz
ModOUT	FS = 1			30		70	
Duty Cycle (Notes 2, 3)	Measured at V _{DD} /2			45	50	55	%
Output Rise Time (Notes 2, 3)	Measured between	Measured between 20% to 80%			1.75	2.5	nS
Output Fall Time (Notes 2, 3)	Measured between	Measured between 80% to 20%			1.0	1.6	nS
Cycle-to-Cycle Jitter	Unloaded output	FS = 0	10 MHz		±450	±600	pS
(Note 3)			35 MHz		±125	±250	
	FS = 1 30 MHz			±225	±350		
			70 MHz		±150	±300	1
PLL Lock Time (Note 3)	Stable power supply	, valid clock pres	ented on XIN / CLKIN			3	mS

^{1.} Functionality with Crystal is guaranteed by design and characterization. Not 100% tested in production.

All parameters are specified with 10 pF loaded outputs.
 Parameter is guaranteed by design and characterization. Not 100% tested in production.

Table 7. DC ELECTRICAL CHARACTERISTICS FOR 3.3 V

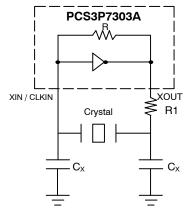
Parameter	Description	Test	Conditions	Min	Тур	Max	Units
VDD	Supply Voltage			3.0	3.3	3.6	V
V _{IL}	Input LOW Voltage					0.8	V
V _{IH}	Input HIGH Voltage			2.0			V
I _{IL}	Input LOW Current	V _{IN} = 0 V	V _{IN} = 0 V			-50	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$				50	μΑ
V _{OL}	Output LOW Voltage	I _{OL} = 8 mA	I _{OL} = 8 mA			0.4	V
V _{OH}	Output HIGH Voltage	I _{OH} = -8 mA	I _{OH} = -8 mA				V
Icc	Static Supply Current	XIN / CLKIN pu	XIN / CLKIN pulled low			700	μΑ
I _{DD}	Dynamic Supply Current	Unloaded	FS = 0; @ 10 MHz			7	mA
		Output	FS = 1; @ 80 MHz			20	
Z _O	Output Impedance				35		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 8. SWITCHING CHARACTERISTICS FOR 3.3 V

Parameter		Test Condition	IS	Min	Тур	Max	Units
Input Frequency (Note 1) /	FS = 0	FS = 0				40	MHz
ModOUT	FS = 1			30		80	
Duty Cycle (Notes 2, 3)	Measured at V _{DD} /2			45	50	55	%
Output Rise Time (Notes 2, 3)	Measured between	Measured between 20% to 80%			1.3	2	nS
Output Fall Time (Notes 2, 3)	Measured between	Measured between 80% to 20%			0.9	1.3	nS
Cycle-to-Cycle Jitter	Unloaded output	Unloaded output FS = 0 10 MHz			±450	±600	pS
(Note 3)		40 MHz			±125	±250	
	FS = 1 30 MHz			±225	±350		
			80 MHz		±125	±250]
PLL Lock Time (Note 3)	Stable power supply	, valid clock pres	sented on XIN / CLKIN			3	mS

^{4.} Functionality with Crystal is guaranteed by design and characterization. Not 100% tested in production.


Table 9. TYPICAL CRYSTAL SPECIFICATIONS

Fundamental AT Cut Parallel Resonant Crystal				
Nominal frequency	25 MHz			
Frequency tolerance	±50 ppm or better at 25°C			
Operating temperature range	-25°C to +85°C			
Storage temperature	-40°C to +85°C			
Load capacitance (C _P)	18 pF			
Shunt capacitance	7 pF maximum			
ESR	25 Ω			

 $NOTE: C_L$ is the Load Capacitance and R1 is used to prevent oscillations at overtone frequency of the Fundamental frequency.

All parameters are specified with 10 pF loaded outputs.

^{6.} Parameter is guaranteed by design and characterization. Not 100% tested in production.

 $C_X=2^{\star}(C_P-C_S),$ Where $C_P=$ Load capacitance of crystal from crystal vendor datasheet.

 C_S = Stray capacitance due to C_{IN} , PCB, Trace, etc.

Figure 2. Typical Crystal Interface Circuit

Switching Waveforms

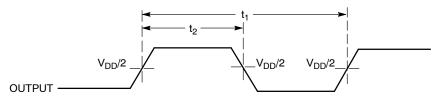


Figure 3. Duty Cycle Timing

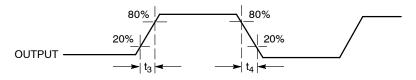
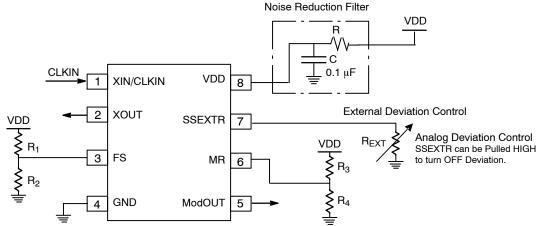



Figure 4. Output Rise/Fall Time

Application Schematic

Note: FS (Pin#3) MR (Pin#6): Connect to VDD or GND Refer to Pin Description table for Functionality details.

Use 0 Ω resistor at either R_1 or R_2 to configure FS.

Use 0 Ω resistor at either R_3 or R_4 to configure MR.

Figure 5. Application Schematic

Charts

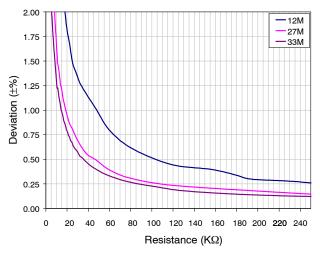


Figure 6. Deviation vs. Resistance (FS = 0, MR = 0)

Figure 7. Deviation vs. Resistance (FS = 0, MR = 1)

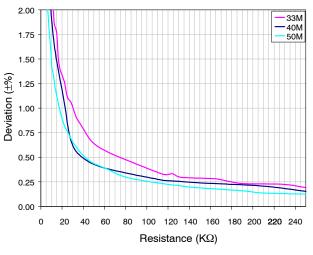


Figure 8. Deviation vs. Resistance (FS = 1, MR = 0)



Figure 9. Deviation vs. Resistance (FS = 1, MR = 1)

NOTE: Device to Device variation of Deviation is ±10% (0°C to 70°C) and ±25% (-25°C to +85°C)

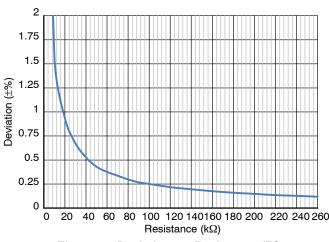


Figure 10. Deviation vs. Resistance (FS = 1, MR = 0) $V_{DD} = 3.3 \text{ V}$

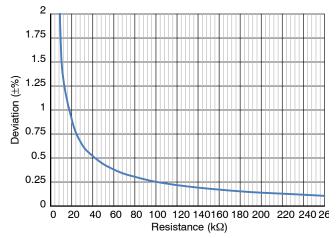
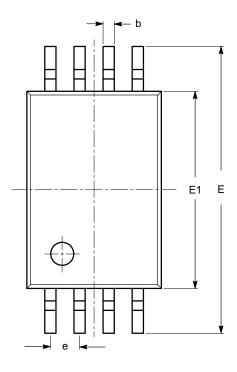


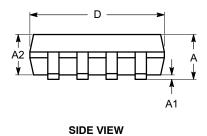
Figure 11. Deviation vs. Resistance (FS = 1, MR = 1) $V_{DD} = 3.3 \text{ V}$

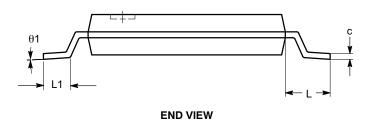
Table 10. ORDERING INFORMATION


Part Number	Marking	Temperature	Package	Shipping [†]
PCS3P7303AG-08TR	BKL	-25°C to +85°C	8-pin TSSOP (Pb-Free)	Tape & Reel
PCS3P7303AG-08TT	BKL	-25°C to +85°C	8-pin TSSOP (Pb-Free)	Tube
PCS3P7303AG-08CR	BK	-25°C to +85°C	8L WDFN (2 mm x 2 mm) (Pb-Free)	Tape & Reel

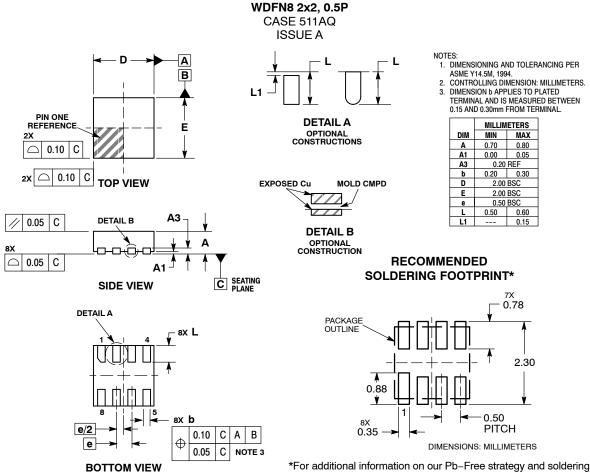
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTE: A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-Free.


PACKAGE DIMENSIONS


TSSOP8, 4.4x3 CASE 948AL ISSUE O

SYMBOL	MIN	NOM	MAX		
Α			1.20		
A1	0.05		0.15		
A2	0.80	0.90	1.05		
b	0.19		0.30		
С	0.09		0.20		
D	2.90	3.00	3.10		
Е	6.30	6.40	6.50		
E1	4.30	4.40	4.50		
е	0.65 BSC				
L	1.00 REF				
L1	0.50	0.60	0.75		
θ	0°		8°		



Notes:

- (1) All dimensions are in millimeters. Angles in degrees.(2) Complies with JEDEC MO-153.

PACKAGE DIMENSIONS

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

TIMING SAFE is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7
PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2
ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8
ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2
ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7
AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1