

#### Is Now Part of



# ON Semiconductor®

# To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to Fairchild <a href="guestions@onsemi.com">guestions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer



Data Sheet

September 2013

# N-Channel Logic Level Power MOSFET 60V, 11A, 107 $m\Omega$

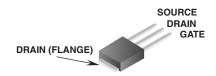
These N-Channel enhancement-mode power MOSFETs are manufactured using the latest manufacturing process technology. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits.

Formerly developmental type TA49158.

### **Ordering Information**

| PART NUMBER   | PACKAGE  | BRAND  |
|---------------|----------|--------|
| RFD3055LE     | TO-251AA | F3055L |
| RFD3055LESM9A | TO-252AA | F3055L |

#### **Features**


- 11A, 60V
- $r_{DS(ON)} = 0.107\Omega$
- Temperature Compensating PSPICE<sup>®</sup> Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- · Related Literature
  - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

#### Symbol



### Packaging

JEDEC TO-251AA



#### JEDEC TO-252AA



#### RFD3055LE, RFD3055LESM

### **Absolute Maximum Ratings** $T_C = 25^{\circ}C$ , Unless Otherwise Specified

|                                                                   | RFD3055LE,                  |       |
|-------------------------------------------------------------------|-----------------------------|-------|
|                                                                   | RFD3055LESM9A               | UNITS |
| Drain to Source Voltage (Note 1)                                  | 60                          | V     |
| Drain to Gate Voltage ( $R_{GS} = 20k\Omega$ ) (Note 1) $V_{DGR}$ | 60                          | V     |
| Gate to Source VoltageV <sub>GS</sub>                             | ±16                         | V     |
| Continuous Drain Current                                          | 11                          | Α     |
| Pulsed Drain Current (Note 3)                                     | Refer to Peak Current Curve |       |
| Single Pulse Avalanche Rating                                     | Refer to UIS Curve          |       |
| Power DissipationP <sub>D</sub>                                   | 38                          | W     |
| Derate Above 25°C                                                 | 0.25                        | W/oC  |
| Operating and Storage Temperature                                 | -55 to 175                  | °C    |
| Maximum Temperature for Soldering                                 |                             |       |
| Leads at 0.063in (1.6mm) from Case for 10sT <sub>L</sub>          | 300                         | °C    |
| Package Body for 10s, See Techbrief 334                           | 260                         | °C    |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

#### NOTE:

1.  $T_J = 25^{\circ}C$  to  $150^{\circ}C$ .

#### **Electrical Specifications** $T_C = 25^{\circ}C$ , Unless Otherwise Specified

| PARAMETER                              | SYMBOL              | TEST CO                                                                                 | ONDITIONS                 | MIN | TYP  | MAX   | UNITS |
|----------------------------------------|---------------------|-----------------------------------------------------------------------------------------|---------------------------|-----|------|-------|-------|
| Drain to Source Breakdown Voltage      | BV <sub>DSS</sub>   | I <sub>D</sub> = 250μA, V <sub>GS</sub> = 0V                                            |                           | 60  | -    | -     | V     |
| Gate Threshold Voltage                 | V <sub>GS(TH)</sub> | V <sub>GS</sub> = V <sub>DS</sub> , I <sub>D</sub> = 250μA                              |                           | 1   | -    | 3     | V     |
| Zero Gate Voltage Drain Current        | I <sub>DSS</sub>    | V <sub>DS</sub> = 55V, V <sub>GS</sub> = 0V                                             | \ \                       | -   | -    | 1     | μΑ    |
|                                        |                     | $V_{DS} = 50V, V_{GS} = 0V,$                                                            | $T_{C} = 150^{\circ}C$    | -   | -    | 250   | μΑ    |
| Gate to Source Leakage Current         | I <sub>GSS</sub>    | V <sub>GS</sub> = ±16V                                                                  | V <sub>GS</sub> = ±16V    |     | -    | ±100  | nA    |
| Drain to Source On Resistance (Note 2) | r <sub>DS(ON)</sub> | I <sub>D</sub> = 8A, V <sub>GS</sub> = 5V (Fig                                          | gure 11)                  | -   | -    | 0.107 | Ω     |
| Turn-On Time                           | ton                 | $V_{DD} \approx 30V, I_D = 8A,$ $V_{GS} = 4.5V, R_{GS} = 32\Omega$ (Figures 10, 18, 19) |                           | -   | -    | 170   | ns    |
| Turn-On Delay Time                     | t <sub>d</sub> (ON) |                                                                                         |                           | -   | 8    | -     | ns    |
| Rise Time                              | t <sub>r</sub>      |                                                                                         |                           | -   | 105  | -     | ns    |
| Turn-Off Delay Time                    | t <sub>d(OFF)</sub> |                                                                                         |                           | -   | 22   | -     | ns    |
| Fall Time                              | t <sub>f</sub>      |                                                                                         |                           | -   | 39   | -     | ns    |
| Turn-Off Time                          | tOFF                |                                                                                         |                           | -   | -    | 92    | ns    |
| Total Gate Charge                      | Q <sub>g(TOT)</sub> | V <sub>GS</sub> = 0V to 10V                                                             | $V_{DD} = 30V, I_D = 8A,$ | -   | 9.4  | 11.3  | nC    |
| Gate Charge at 5V                      | Q <sub>g(5)</sub>   | V <sub>GS</sub> = 0V to 5V                                                              |                           | -   | 5.2  | 6.2   | nC    |
| Threshold Gate Charge                  | Q <sub>g(TH)</sub>  |                                                                                         |                           | -   | 0.36 | 0.43  | nC    |
| Input Capacitance                      | C <sub>ISS</sub>    | V <sub>DS</sub> = 25V, V <sub>GS</sub> = 0V, f = 1MHz<br>(Figure 14)                    |                           | -   | 350  | -     | pF    |
| Output Capacitance                     | Coss                |                                                                                         |                           | -   | 105  | -     | pF    |
| Reverse Transfer Capacitance           | C <sub>RSS</sub>    |                                                                                         |                           | -   | 23   | -     | pF    |
| Thermal Resistance Junction to Case    | $R_{	heta JC}$      |                                                                                         |                           | - , | -    | 3.94  | °C/W  |
| Thermal Resistance Junction to Ambient | $R_{\theta JA}$     | TO-220AB                                                                                |                           | -   | - // | 62    | °C/W  |
|                                        |                     | TO-251AA, TO-252AA                                                                      |                           | -   | -    | 100   | °C/W  |

#### **Source to Drain Diode Specifications**

| PARAMETER                     | SYMBOL          | TEST CONDITIONS                           | MIN | TYP | MAX  | UNITS |
|-------------------------------|-----------------|-------------------------------------------|-----|-----|------|-------|
| Source to Drain Diode Voltage | $V_{SD}$        | I <sub>SD</sub> = 8A                      |     | -   | 1.25 | V     |
| Diode Reverse Recovery Time   | t <sub>rr</sub> | $I_{SD} = 8A$ , $dI_{SD}/dt = 100A/\mu s$ |     | -   | 66   | ns    |

#### NOTES:

- 2. Pulse Test: Pulse Width  $\leq$  300ms, Duty Cycle  $\leq$  2%.
- 3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5).

#### Typical Performance Curves Unless Otherwise Specified

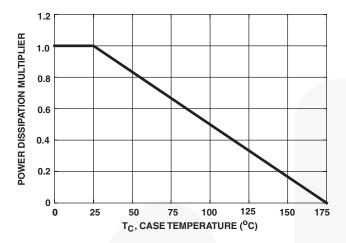



FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

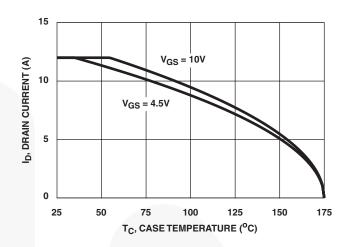



FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

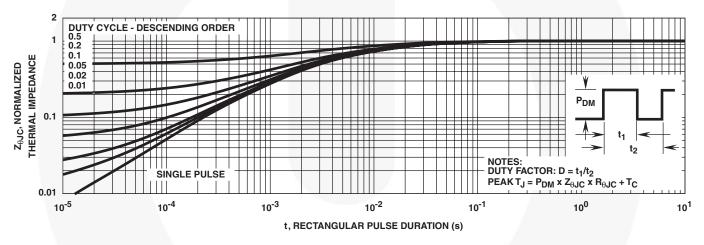



FIGURE 3. NORMALIZED TRANSIENT THERMAL IMPEDANCE

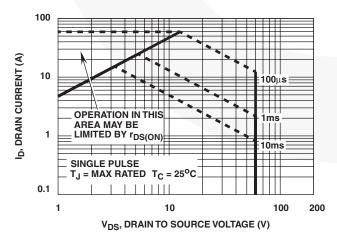



FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

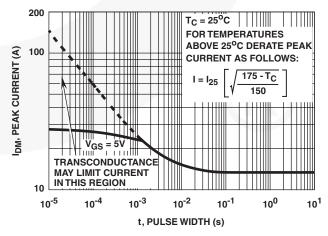
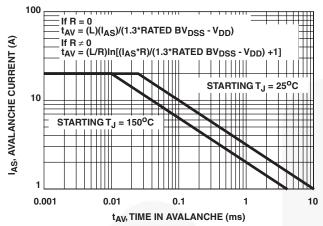




FIGURE 5. PEAK CURRENT CAPABILITY

#### Typical Performance Curves Unless Otherwise Specified (Continued)



NOTE: Refer to Fairchild Application Notes AN9321 and AN9322 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING

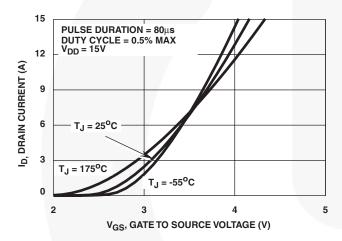



FIGURE 8. TRANSFER CHARACTERISTICS

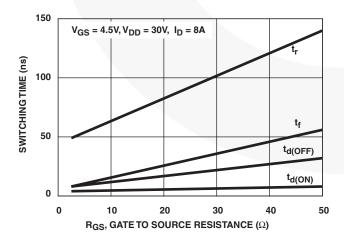



FIGURE 10. SWITCHING TIME vs GATE RESISTANCE

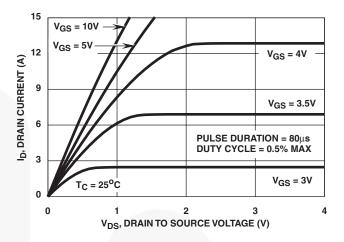



FIGURE 7. SATURATION CHARACTERISTICS

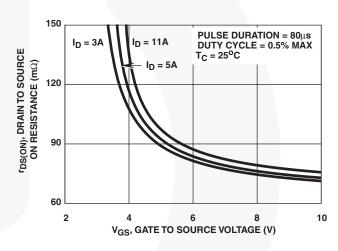



FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

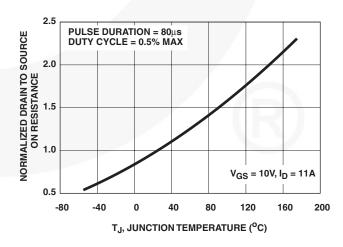



FIGURE 11. NORMALIZED DRAINTO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

#### Typical Performance Curves Unless Otherwise Specified (Continued)

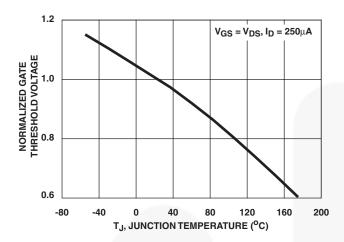



FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

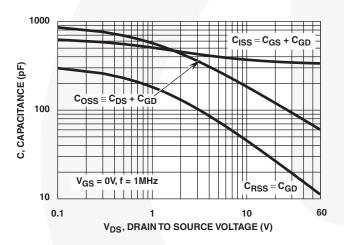



FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

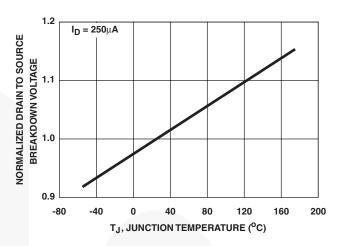
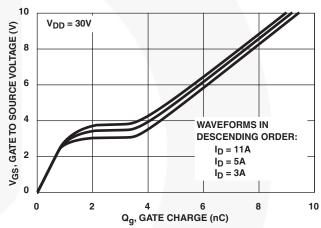




FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE



NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

#### Test Circuits and Waveforms

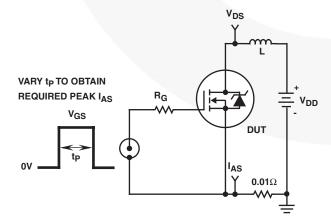



FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT

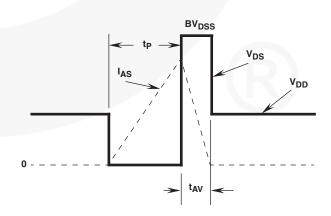



FIGURE 17. UNCLAMPED ENERGY WAVEFORMS

## Test Circuits and Waveforms (Continued)

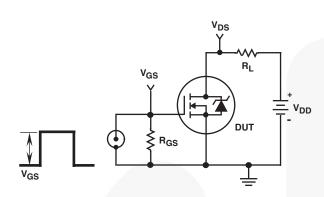



FIGURE 18. SWITCHING TEST CIRCUIT

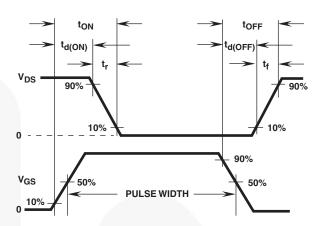



FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

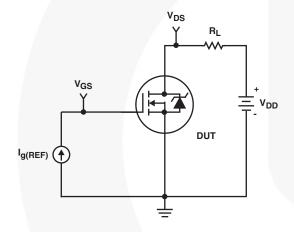



FIGURE 20. GATE CHARGE TEST CIRCUIT

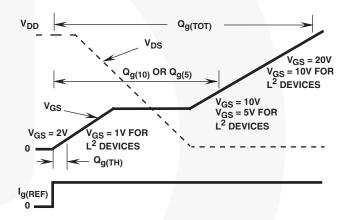



FIGURE 21. GATE CHARGE WAVEFORMS

#### **PSPICE Electrical Model**

rev 1/30/95

.SUBCKT RFD3055LE 2 1 3:

```
CA 12 8 3.9e-9
CB 15 14 4.9e-9
CIN 6 8 3.25e-10
DBODY 7 5 DBODYMOD
                                                                                                                LDRAIN
DBREAK 5 11 DBREAKMOD
                                                                    DPLCAP
                                                                                                                          DRAIN
DPLCAP 10 5 DPLCAPMOD
                                                                 10
                                                                                                               RLDRAIN
EBREAK 11 7 17 18 67.8
                                                                               ≥RSLC1
                                                                                              DBREAK
                                                                                51
EDS 14 8 5 8 1
                                                                  RSLC2 ≥
EGS 13 8 6 8 1
                                                                                   ESLC
ESG 6 10 6 8 1
                                                                                                      11
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
                                                                                50
                                                                                                              DBODY
                                                                                RDRAIN
                                                               <u>6</u>
8
                                                                                             EBREAK
                                                         ESG
IT 8 17 1
                                                                     EVTHRES
                                                                                    16
                                                                                21
                                                                        19
8
                                                                                               MWEAK
LDRAIN 2 5 1.0e-9
                                       LGATE
                                                       EVTEMP
LGATE 1 9 5.42e-9
                                                RGATE
                              GATE
                                                          18
22
                                                                                  d₽
LSOURCE 3 7 2.57e-9
                                                                                      MMED
                                                      20
                                                                               MSTR
                                      RLGATE
MMED 16 6 8 8 MMEDMOD
                                                                                                               LSOURCE
MSTRO 16 6 8 8 MSTROMOD
                                                                          CIN
                                                                                                                         SOURCE
MWEAK 16 21 8 8 MWEAKMOD
                                                                                    8
                                                                                               RSOURCE
RBREAK 17 18 RBREAKMOD 1
                                                                                                               RLSOURCE
RDRAIN 50 16 RDRAINMOD 3.7e-2
                                                        S1A
                                                                  <sup>o</sup>S2A
RGATE 9 20 3.37
                                                                                                   RBREAK
                                                      12 I
RLDRAIN 2 5 10
                                                                          15
                                                            13
8
                                                                 14
13
RLGATE 1 9 54.2
RLSOURCE 3 7 25.7
                                                        S1B
                                                                                                              RVTEMP
                                                                  o S2B
RSLC1 5 51 RSLCMOD 1e-6
                                                               13
RSLC2 5 50 1e3
                                                                          CB
                                                                                                             19
                                                  CA
                                                                                             IT
RSOURCE 8 7 RSOURCEMOD 2.50e-2
                                                                               14
RVTHRES 22 8 RVTHRESMOD 1
                                                                                                               VBAT
                                                                              <u>5</u>
                                                           EGS
                                                                       EDS
RVTEMP 18 19 RVTEMPMOD 1
                                                                                            8
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
                                                                                                   RVTHRES
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*30),3))}
.MODEL DBODYMOD D (IS = 1.75e-13 RS = 1.75e-2 TRS1 = 1e-4 TRS2 = 5e-6 CJO = 5.9e-10 TT = 5.45e-8 N = 1.03 M = 0.6)
.MODEL DBREAKMOD D (RS = 6.50e-1 TRS1 = 1.25e-4 TRS2 = 1.34e-6)
.MODEL DPLCAPMOD D (CJO = 3.21e-10 IS = 1e-30 N = 10 M = 0.81)
.MODEL MMEDMOD NMOS (VTO = 2.02 KP = .83 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.37)
.MODEL MSTROMOD NMOS (VTO = 2.39 \text{ KP} = 14 \text{ IS} = 1e-30 \text{ N} = 10 \text{ TOX} = 1 \text{ L} = 1 \text{u} \text{ W} = 1 \text{u})
MODEL MWEAKMOD NMOS (VTO = 1.78 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.7 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.06e-3 TC2 = 0)
MODEL RDRAINMOD RES (TC1 = 1.23e-2 TC2 = 2.58e-5)
MODEL RSLCMOD RES (TC1 = 0 \text{ TC2} = 0)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -2.19e-3 TC2 = -4.97e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.6e-3 TC2 = 1e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4 VOFF= -2.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -4)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 0)
```

For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatlev.

**FNDS** 

.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= -0.5)



#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

( | )<sub>®</sub>

AccuPower<sup>™</sup> F-PFS™ AX-CAP®\* FRFFT® BitSiC™
Build it Now™ Global Power Resource<sup>SM</sup> GreenBridge™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ CorePOWER™ CROSSVOLT™ G*max*™ GTO™ CTL™ IntelliMAX™

Current Transfer Logic™ DEUXPEED® ISOPLANAR™ Dual Cool™ Marking Small Speakers Sound Louder

EcoSPARK® and Better™ MegaBuck™ EfficentMax™ ESBC™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™

Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ mWSaver® FACT<sup>®</sup> FAST® OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™ FPS™

PowerTrench® PowerXS™

Programmable Active Droop™

QFET<sup>0</sup> QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™

SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM®\*
GENERAL TinyBoost<sup>®</sup> TinyBuck<sup>®</sup> TinyCalc™ TinyLogic<sup>®</sup> TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®\* uSerDes™

UHC<sup>®</sup> Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS **Definition of Terms**

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |

Rev. 166

<sup>\*</sup>Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdt/Patent-Marking.pdf">www.onsemi.com/site/pdt/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60\_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B