Hyperfast Dual Diode 60 A, 400 V - 600 V

RHRG3060CC, RHRG3040CC

Description

The RHRG3060CC, RHRG3040CC is a hyperfast dual diode with soft recovery characteristics. It has the half recovery time of ultrafast diodes and is silicon nitride passivated ionimplanted epitaxial planar construction

These devices are intended to be used as freewheeling/ clamping diodes and diodes in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Features

- Hyperfast Recovery $\mathrm{t}_{\mathrm{rr}}=45 \mathrm{~ns}$ (@ $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}$)
- Max Forward Voltage, $\mathrm{V}_{\mathrm{F}}=2.1 \mathrm{~V}$ (@ $\left.\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$
- High Reverse Voltage and High Reliability
- Avalanche Energy Rated
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATING (Per Leg) $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Description	Symbol	RHRG3060CC	RHRG3040CC	Unit
Peak Repetitive Reverse Voltage	$\mathrm{V}_{\mathrm{RRM}}$	600	400	V
Working Peak Reverse Voltage	$\mathrm{V}_{\mathrm{RWM}}$	600	400	V
DC Blocking Voltage	V_{R}	600	400	V
Average Rectified Forward Current $\left(\mathrm{T}_{\mathrm{C}}=120^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	30	30	A
Repetitive Peak Surge Current (Square Wave, 20 kHz$)$	$\mathrm{I}_{\mathrm{FRM}}$	70	70	A
Non-repetitive Peak Surge Current (Halfwave, $1 \mathrm{Phase}, 60 \mathrm{~Hz})$	$\mathrm{I}_{\mathrm{FSM}}$	325	325	A
Maximum Power Dissipation	P_{D}	125	125	W
Avalanche Energy (See Figures 10 and 11)	$\mathrm{E}_{\text {AVL }}$	20	20	mJ
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{STG}}, \mathrm{T}_{\mathrm{J}}$	-65 to 175	-65 to 175	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Shipping
RHRG3060CC	RHRG3060C	TO-247-3L	$450 /$ Tube
RHRG3040CC	RHRG3040C	TO-247-3L	$450 /$ Tube

ELECTRICAL SPECIFICATIONS (Per Leg) $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	RHRG3060CC			RHRG3040CC			$\begin{aligned} & \hline \text { Unit } \\ & \hline \text { Unit } \end{aligned}$
			Min	Typ	Max	Min	Typ	Max	
Instantaneous Forward Voltage (Pulse Width $=300 \mu \mathrm{~s}$, Duty $\mathrm{Cycle}=2 \%$)	V_{F}	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}$	-	-	2.1	-	-	2.1	V
		$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	1.7	-	-	1.7	V
Instantaneous Reverse Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V}$	-	-	-	-	-	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$	-	-	250	-	-	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	-	-	-	1.0	mA
		$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	1.0	-	-	-	mA
Reverse Recovery Time (See Figure 9), Summation of ta +tb .	$\mathrm{T}_{\text {rr }}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mathrm{\mu s}$	-	-	40	-	-	40	ns
		$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	-	45	-	-	45	ns
Time to Reach Peak Reverse Current (See Figure 9).	t_{a}	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	22	-	-	22	-	ns
Time from Peak IRM to Projected Zero Crossing of IRM Based on a Straight Line from Peak IRM through 25% of I_{RM} (See Figure 9).	t_{b}	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	18	-	-	18	-	ns
Reverse Recovery Charge	Q_{rr}	$\mathrm{l}_{\mathrm{F}}=30 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	100	-	-	100	-	nC
Junction Capacitance	C_{J}	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}$	-	85	-	-	85	-	pF
Thermal Resistance Junction to Case	$\mathrm{R}_{\text {өJC }}$		-	-	1.2	-	-	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

RHRG3060CC, RHRG3040CC

TYPICAL PERFORMANCE CURVES

Figure 1. Forward Current vs. Forward Voltage

Figure 3. $T_{r r}, t_{a}$ and t_{b} Curves vs. Forward Current

Figure 5. $T_{r r}, t_{a}$ and t_{b} Curves vs. Forward Current

Figure 2. Reverse Current vs. Reverse Voltage

Figure 4. $T_{r r}, t_{a}$ and t_{b} Curves vs. Forward Current

Figure 6. Current Derating Curve

RHRG3060CC, RHRG3040CC

TYPICAL PERFORMANCE CURVES (continued)

Figure 7. Junction Capacitance vs. Reverse Voltage

TEST CIRCUITS AND WAVEFORMS

Figure 9. T_{rr} Waveforms and Definitions
Figure 8. $\mathrm{Trr}_{\text {rr }}$ Test Circuit

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{MAX}}=1 \mathrm{~A} \\
& \mathrm{~L}=40 \mathrm{mH} \\
& \mathrm{R}<0.1 \Omega \\
& \left.\mathrm{E}_{\mathrm{AVL}}=1 / 2 \mathrm{LI}{ }^{2}\left[\mathrm{~V}_{\mathrm{R}(\mathrm{AVL}}\right) /\left(\mathrm{V}_{\mathrm{R}(\mathrm{AVL})}-\mathrm{V}_{\mathrm{DD}}\right)\right] \\
& \left.\mathrm{Q}_{1}=\mathrm{IGBT}^{(\mathrm{BV}} \mathrm{CDCS}>\mathrm{DUT} \mathrm{~V}_{\mathrm{R}(\mathrm{AVL}}\right)
\end{aligned}
$$

Figure 10. Avalanche Energy Test Circuit

Figure 11. Avalanche Current and Voltage Waveforms

TO-247-3LD SHORT LEAD CASE 340CK ISSUE A

DATE 31 JAN 2019

NOTES: UNLESS OTHERWISE SPECIFIED.
A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DRAWING CONFORMS TO ASME Y14.5-2009.
D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

	AYWWZZ XXXXXXX XXXXXXX -
XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
ZZ	$=$ Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versins are

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
RD0306T-H BAQ33-GS18 BAV17-TR BAV19-TR 1N3611 NTE156A NTE525 NTE571 NTE574 NTE5804 NTE5806 NTE6244 1SS181-TP 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B 1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F BAW75-TAP MM230L-CAA IDW40E65D1 JAN1N3600 LL4151-GS18 053684A SMMSD4148T3G 707803H NSVDAN222T1G SP000010217 ACDSW4448-HF CDSZC01100-HF $\underline{\text { BAV199E6433HTMA1 BAV70M3T5G SMBT2001T1G NTE5801 NTE5800 NTE5808 NTE6240 NTE6248 DLM10C-AT1 BAS28-7 }}$ BAW56HDW-13

