General Purpose Transistors

PNP Silicon

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC856, SBC856 BC857, SBC857 BC858, NSVBC858, BC859	V _{CEO}	-65 -45 -30	>
Collector-Base Voltage BC856, SBC856 BC857, SBC857 BC858, NSVBC858, BC859	V _{CBO}	-80 -50 -30	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current – Continuous	I _C	-100	mAdc
Collector Current – Peak	I _C	-200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction–to–Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = 0.4 x 0.3 x 0.024 in 99.5% alumina.

ON Semiconductor®

www.onsemi.com

SOT-23 (TO-236) CASE 318 STYLE 6

MARKING DIAGRAM

xx = Device Code

xx = (Refer to page 6)

M = Date Code*

■ = Pb–Free Package

(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage BC856, SBC856 Series (I _C = -10 mA) BC857, SBC857 Series BC858, NSBVC858 BC859 Series	V _{(BR)CEO}	-65 -45 -30	- - -	- - -	V
$ \begin{array}{lll} & \text{Collector-Emitter Breakdown Voltage} & \text{BC856 S, SBC856eries} \\ & \text{(I}_{\text{C}} = -10~\mu\text{A},~\text{V}_{\text{EB}} = 0) & \text{BC857A, SBC857A, BC857B, SBC857B Only} \\ & & \text{BC858, NSVB858, BC859 Series} \end{array} $	V _{(BR)CES}	-80 -50 -30	- - -	- - -	V
Collector – Base Breakdown Voltage BC856, SBC856 Series $(I_C = -10~\mu\text{A})$ BC857, SBC857 Series BC858, NSVBC858, BC859 Series	V _{(BR)CBO}	-80 -50 -30	- - -	- - -	V
Emitter – Base Breakdown Voltage BC856, SBC856 Series $(I_E = -1.0 \ \mu\text{A})$ BC857, SBC857 Series BC858, NSVBC858, BC859 Series	V _{(BR)EBO}	-5.0 -5.0 -5.0	- - -	- - -	V
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$) ($V_{CB} = -30 \text{ V}$, $T_A = 150^{\circ}\text{C}$)	I _{CBO}	- -	_ _	–15 –4.0	nA μA
ON CHARACTERISTICS					
DC Current Gain BC856A, SBC856A, BC857A, SBC857A, BC858A $(I_C = -10 \mu A, V_{CE} = -5.0 \text{ V})$ BC856B, SBC856B, BC857B, SBC858B, NSVBC858B	h _{FE}	- -	90 150	_ _	-
BC857C, SBC857C BC858C		_	270	-	
$(I_C = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ BC856A, SBC856A, BC857A, SBC857A, BC858A		125	180	250	
BC856B, SBC856B, BC857B, SBC857B, BC858B, NSVBC858B, BC859B BC857C, SBC857C, BC858C, BC859C		220 420	290 520	475 800	
Collector – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{CE(sat)}	- -	_ _	-0.3 -0.65	V
Base – Emitter Saturation Voltage (I_C = -10 mA, I_B = -0.5 mA) (I_C = -100 mA, I_B = -5.0 mA)	V _{BE(sat)}	- -	-0.7 -0.9	- -	V
Base – Emitter On Voltage ($I_C = -2.0$ mA, $V_{CE} = -5.0$ V) ($I_C = -10$ mA, $V_{CE} = -5.0$ V)	V _{BE(on)}	-0.6 -	- -	-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS					
Current – Gain – Bandwidth Product $(I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	100	_	_	MHz
Output Capacitance (V _{CB} = -10 V, f = 1.0 MHz)	C _{ob}	_	_	4.5	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz) BC856, SBC856, BC857, SBC857, BC858, NSVBC858 Series BC859 Series	NF	- -	- -	10 4.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BC857/BC858/BC859/SBC857/NSVBC858

Figure 1. Normalized DC Current Gain

Figure 2. "Saturation" and "On" Voltages

Figure 3. Collector Saturation Region

Figure 4. Base-Emitter Temperature Coefficient

Figure 5. Capacitances

Figure 6. Current-Gain - Bandwidth Product

BC856/SBC856

Figure 7. DC Current Gain

Figure 8. "On" Voltage

Figure 9. Collector Saturation Region

Figure 10. Base-Emitter Temperature Coefficient

Figure 11. Capacitance

Figure 12. Current-Gain - Bandwidth Product

Figure 13. Thermal Response

Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]	
BC856ALT1G	3A	SOT-23	3,000 / Tape & Reel	
SBC856ALT1G*		(Pb-Free)		
BC856ALT3G			10,000 / Tape & Reel	
BC856BLT1G	3B	SOT-23	3,000 / Tape & Reel	
SBC856BLT1G*		(Pb-Free)		
BC856BLT3G			10,000 / Tape & Reel	
SBC856BLT3G*				
BC857ALT1G	3E	SOT-23	3,000 / Tape & Reel	
SBC857ALT1G*		(Pb-Free)		
BC857BLT1G	3F	SOT-23	3,000 / Tape & Reel	
SBC857BLT1G*		(Pb-Free)		
BC857BLT3G			10,000 / Tape & Reel	
NSVBC857BLT3G*				
BC857CLT1G	3G	SOT-23	3,000 / Tape & Reel	
SBC857CLT1G*		(Pb-Free)		
BC857CLT3G			10,000 / Tape & Reel	
BC858ALT1G	3J	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
BC858BLT1G	3K	SOT-23		
NSVBC858BLT1G*		(Pb-Free)		
BC858BLT3G	3L	SOT-23 (Pb-Free)	10,000 / Tape & Reel	
BC858CLT1G		SOT-23 (Pb-Free)	3,000 / Tape & Reel	
BC858CLT3G		SOT-23 (Pb-Free)	10,000 / Tape & Reel	
BC859BLT1G	4B	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
BC859BLT3G		SOT-23 (Pb-Free)	10,000 / Tape & Reel	
BC859CLT1G	4C	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
BC859CLT3G		SOT-23 (Pb-Free)	10,000 / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

DATE 30 JAN 2018

SCALE 4:1 D - 3X b

TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

3. ANODE

NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	O٥		100	O٥		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	PIN 1. CATHODE 2. CATHODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

3. CATHODE

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

RN1607(TE85L,F) DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TKAT146 DTC144ECA-TP DTC144VUAT106

MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G

SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F

EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G

SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G

SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP

DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVDTC143ZM3T5G SMUN5335DW1T2G

SMUN5216DW1T1G NSVMUN5312DW1T2G NSVMUN5215DW1T1G