BC856ALT1G Series

General Purpose Transistors

PNP Silicon

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
$\left.\begin{array}{|c|c|c|c|}\hline \text { Rating } & \text { Symbol } & \text { Value } & \text { Unit } \\ \hline \text { Collector-Emitter Voltage } & \mathrm{V}_{\mathrm{CEO}} & & \mathrm{V} \\ \text { BC856, SBC856 } \\ \text { BC857, SBC857 }\end{array}\right)$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 225 \\ 1.8 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation Alumina Substrate, (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 300 \\ 2.4 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
2. Alumina $=0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

2
SOT-23 (TO-236)
CASE 318
STYLE 6

MARKING DIAGRAM

xx = Device Code $\mathrm{xx}=($ Refer to page 6)
$\mathrm{M}=$ Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage BC856, SBC856 Series $\left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}\right)$ BC857, SBC857 Series BC858, NSBVC858 BC859 Series	$\mathrm{V}_{\text {(BR)CEO }}$	$\begin{aligned} & \hline-65 \\ & -45 \\ & -30 \end{aligned}$	-	-	V
Collector-Emitter Breakdown Voltage BC856 S, SBC856eries $\left(\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EB}}=0\right)$ BC857A, SBC857A, BC857B, SBC857B Only BC858, NSVB858, BC859 Series	$\mathrm{V}_{\text {(BR)CES }}$	$\begin{aligned} & \hline-80 \\ & -50 \\ & -30 \end{aligned}$	-	-	V
Collector-Base Breakdown Voltage BC856, SBC856 Series $\left(\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}\right)$ BC857, SBC857 Series BC858, NSVBC858, BC859 Series	$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	$\begin{aligned} & \hline-80 \\ & -50 \\ & -30 \end{aligned}$	-	-	V
Emitter-Base Breakdown Voltage BC856, SBC856 Series $\left(I_{E}=-1.0 \mu \mathrm{~A}\right)$ BC857, SBC857 Series BC858, NSVBC858, BC859 Series	$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$	$\begin{aligned} & \hline-5.0 \\ & -5.0 \\ & -5.0 \end{aligned}$	-	-	V
$\begin{aligned} & \text { Collector Cutoff Current } \begin{aligned} \left(\mathrm{V}_{\mathrm{CB}}\right. & =-30 \mathrm{~V}) \\ \left(\mathrm{V}_{\mathrm{CB}}\right. & \left.=-30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{aligned} \end{aligned}$	$\mathrm{I}_{\text {cbo }}$	-	-	$\begin{aligned} & \hline-15 \\ & -4.0 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{nA}} \\ & \mu \mathrm{~A} \end{aligned}$

ON CHARACTERISTICS

DC Current Gain BC856A, SBC856A, BC857A, SBC857A, BC858A $\left(I_{C}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right) \quad \mathrm{BC} 856 \mathrm{~B}, \mathrm{SBC856B}, \mathrm{BC} 857 \mathrm{~B}, \mathrm{SBC857B}$, BC858B, NSVBC858B BC857C, SBC857C BC858C $\left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right)$ BC856A, SBC856A, BC857A, SBC857A, BC858A BC856B, SBC856B, BC857B, SBC857B, BC858B, NSVBC858B, BC859B BC857C, SBC857C, BC858C, BC859C	$\mathrm{h}_{\text {FE }}$	125 220 420	90 150 270 180 290 520	- _ 250 475 800	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(I_{C}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-5.0 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$			$\begin{gathered} -0.3 \\ -0.65 \end{gathered}$	V
$\begin{gathered} \text { Base-Emitter Saturation Voltage } \\ \left(I_{C}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-5.0 \mathrm{~mA}\right) \end{gathered}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	$\begin{aligned} & -0.7 \\ & -0.9 \end{aligned}$	-	V
$\begin{gathered} \text { Base-Emitter On Voltage } \\ \left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right) \end{gathered}$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-0.6		$\begin{aligned} & -0.75 \\ & -0.82 \end{aligned}$	V

SMALL-SIGNAL CHARACTERISTICS

$\begin{aligned} & \text { Current-Gain - Bandwidth Product } \\ & \qquad\left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right) \end{aligned}$	f_{T}	100	-	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ob }}$	-	-	4.5	pF
Noise Figure $\begin{array}{r} \left(\mathrm{I}_{\mathrm{C}}=-0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=2.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{BW}=200 \mathrm{~Hz}\right) \\ \mathrm{BC} 856, \mathrm{SBC856}, \mathrm{BC} 857, \mathrm{SBC} 857, \mathrm{BC} 858, \text { NSVBC858 Series } \\ \text { BC859 Series } \end{array}$	NF	-	-	10 4.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BC856ALT1G Series

BC857/BC858/BC859/SBC857/NSVBC858

Figure 1. Normalized DC Current Gain

Figure 3. Collector Saturation Region

Figure 5. Capacitances

Figure 2. "Saturation" and "On" Voltages

Figure 4. Base-Emitter Temperature Coefficient

Figure 6. Current-Gain - Bandwidth Product

BC856ALT1G Series

BC856/SBC856

Figure 7. DC Current Gain

Figure 9. Collector Saturation Region

Figure 11. Capacitance

Figure 8. "On" Voltage

Figure 10. Base-Emitter Temperature Coefficient

Figure 12. Current-Gain - Bandwidth Product

Figure 13. Thermal Response

Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{C}}$ or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})} \leq 150^{\circ} \mathrm{C}$. $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.

ORDERING INFORMATION

Device	Marking	Package	Shipping ${ }^{\dagger}$
BC856ALT1G	3A	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
SBC856ALT1G*			
BC856ALT3G			10,000 / Tape \& Reel
BC856BLT1G	3B	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
SBC856BLT1G*			
BC856BLT3G			10,000 / Tape \& Reel
SBC856BLT3G*			
BC857ALT1G	3 E	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
SBC857ALT1G*			
BC857BLT1G	3 F	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
SBC857BLT1G*			
BC857BLT3G			10,000 / Tape \& Reel
NSVBC857BLT3G*			
BC857CLT1G	3G	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
SBC857CLT1G*			
BC857CLT3G			10,000 / Tape \& Reel
BC858ALT1G	3 J	$\begin{aligned} & \text { SOT-23 } \\ & \text { (Pb-Free) } \end{aligned}$	3,000 / Tape \& Reel
BC858BLT1G	3K	$\begin{gathered} \hline \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	
NSVBC858BLT1G*			
BC858BLT3G	3L	$\begin{gathered} \hline \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	10,000 / Tape \& Reel
BC858CLT1G		$\begin{gathered} \hline \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
BC858CLT3G		$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	10,000 / Tape \& Reel
BC859BLT1G	4B	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
BC859BLT3G		$\begin{gathered} \hline \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	10,000 / Tape \& Reel
BC859CLT1G	4C	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel
BC859CLT3G		$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	10,000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RN1607(TE85L,F) DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TKAT146 DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G NSVMUN5312DW1T2G NSVMUN5215DW1T1G

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

