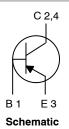
MMJT350

Bipolar Power Transistors

PNP Silicon

Bipolar power transistors are designed for use in line-operated applications such as low power, line-operated series pass and switching regulators requiring PNP capability.

Features


- High Collector-Emitter Sustaining Voltage
- Excellent DC Current Gain
- Epoxy Meets UL 94 V-0 @ 0.125 in
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

ON Semiconductor®

www.onsemi.com

0.5 AMPERE POWER TRANSISTOR PNP SILICON 300 VOLTS, 2.75 WATTS

MARKING DIAGRAM

SOT-223 CASE 318E STYLE 1

A = Assembly Location

Y = Year W = Work Week ■ Pb-Free Package T350 = Device Code

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMJT350T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
SMMJT350T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
SMMJT350T3G	SOT-223 (Pb-Free)	4,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MMJT350

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	300	Vdc
Collector-Base Voltage	V _{CB}	300	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current - Continuous	I _C	0.5	Adc
Collector Current - Peak	I _{CM}	0.75	Adc
Total Power Dissipation $\mbox{$(Q$ T_C = 25^{\circ}C$)$}$ Derate above 25°C Derate above 25°C Total $\mbox{$P_D$ $(Q$ T_A = 25^{\circ}C$)$}$ mounted on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material Total $\mbox{$P_D$ $(Q$ T_A = 25^{\circ}C$)$}$ mounted on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material	P _D	2.75 22 1.40 0.65	W mW/°C W W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C
ESD – Human Body Model	HBM	3B	V
ESD – Machine Model	ММ	С	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material Junction-to-Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material	R _{θJC} R _{θJA} R _{θJA}	45 85 190	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	<u>, </u>		•	•
Collector-Emitter Sustaining Voltage (I _C = 1.0 mAdc, I _B = 0 Adc)	V _{CEO(SUS}	300	_	Vdc
Collector–Base Current (V _{CB} = Rated V _{CBO} , V _{EB} = 0)	I _{CBO}	-	100	nAdc
Emitter Cut-off Current (V _{BE} = 5.0 Vdc)	I _{EBO}	-	100	nAdc
ON CHARACTERISTICS	·			
DC Current Gain ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	h _{FE}	30 20	240 -	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

MMJT350

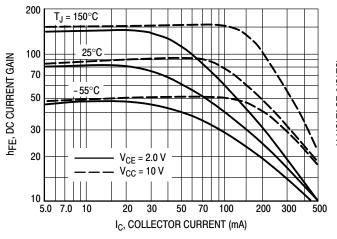


Figure 1. DC Current Gain

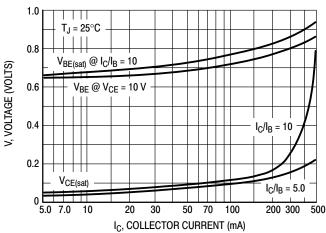


Figure 2. "On" Voltages

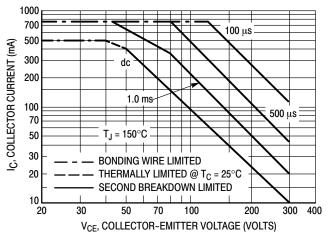


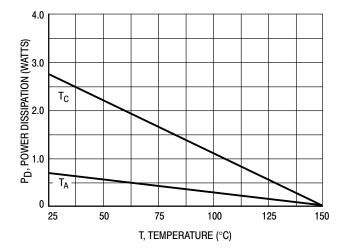
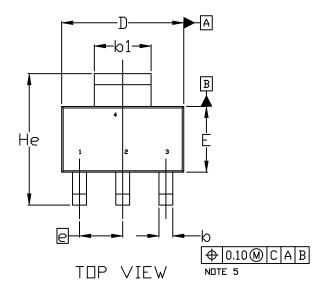
Figure 3. Active-Region Safe Operating Area

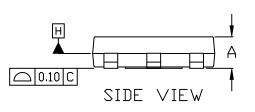


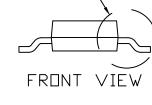
Figure 4. Temperature Coefficients

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

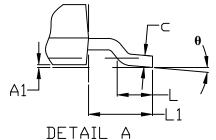
The data of Figure 3 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

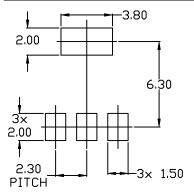




Figure 5. Power Derating



SOT-223 (TO-261) CASE 318E-04 ISSUE R


DATE 02 OCT 2018


SEE DETAIL A

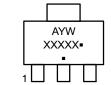
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
Ø	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
U	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

 $XXXXX \ = Specific \ Device \ Code$

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15