Power MOSFET

100 V, 12 A, N–Channel, Logic Level DPAK

Features

- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Avalanche Energy Specified
- Logic Level
- Pb–Free Packages are Available

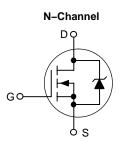
Typical Applications

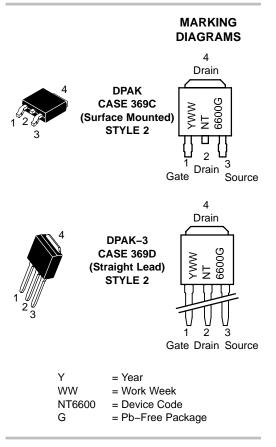
- PWM Motor Controls
- Power Supplies
- Converters

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

(1) = 25 of unless otherwise noted)			
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	100	Vdc
Drain-to-Source Voltage (R_{GS} = 1.0 M Ω)	V _{DGR}	100	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	± 20	Vdc
Drain Current – Continuous @ T _A = 25°C – Continuous @ T _A =100°C – Pulsed (Note 3)	I _D I _D I _{DM}	12 9.0 44	Adc Apk
Total Power Dissipation Derate above 25°C Total Power Dissipation @ $T_A = 25°C$ (Note 1) Total Power Dissipation @ $T_A = 25°C$ (Note 2)	P _D	56.6 0.38 1.76 1.28	W W/°C W W
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to +175	°C
$ \begin{array}{l} \mbox{Single Pulse Drain-to-Source Avalanche} \\ \mbox{Energy} - \mbox{Starting } T_J = 25^\circ \mbox{C} \\ \mbox{(V}_{DD} = 50 \mbox{ Vdc}, \mbox{V}_{GS} = 5.0 \mbox{ Vdc}, \\ \mbox{I}_L = 12 \mbox{ Apk}, \mbox{L} = 1.0 \mbox{ mH}, \mbox{R}_G = 25 \Omega \mbox{)} \end{array} $	E _{AS}	72	mJ
Thermal Resistance – Junction-to-Case – Junction-to-Ambient (Note 1) – Junction-to-Ambient (Note 2)	R _θ jc R _θ ja R _θ ja	2.65 85 117	°C/W
Maximum Temperature for Soldering Purposes, (1/8" from case for 10 s)	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- 1. When surface mounted to an FR4 board using 0.5 sq in pad size.
- 2. When surface mounted to an FR4 board using the minimum recommended pad size.
- 3. Pulse Test: Pulse Width = 10 μ s, Duty Cycle = 2%.



ON Semiconductor®

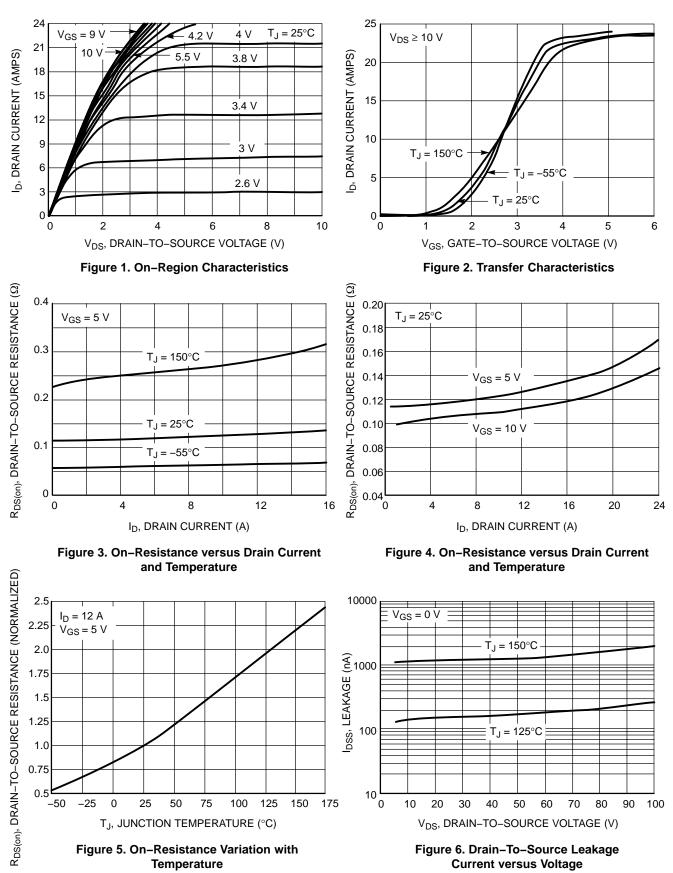
http://onsemi.com

V _{(BR)DSS} R _{DS(on)} TYP		I _D MAX
100 V	118 mΩ @ 5.0 V	12 A

ORDERING INFORMATION

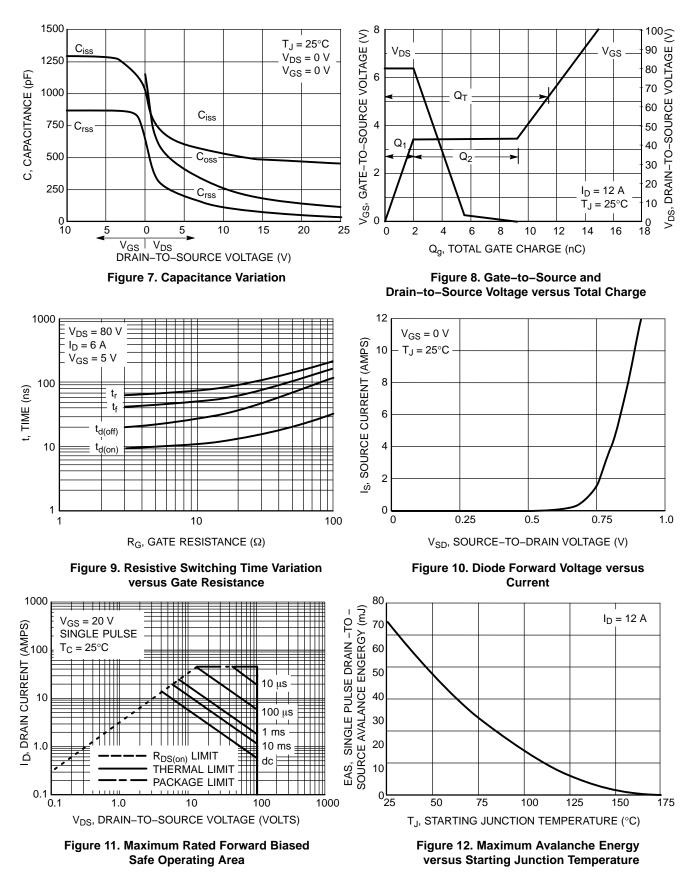
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

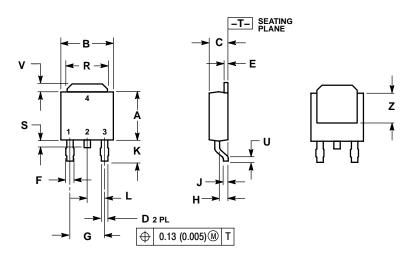

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-	-	-	-	-
Drain-to-Source Breakdown Volta $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu \text{Adc})$	V _{(BR)DSS}	100	_	_	Vdc	
Zero Gate Voltage Drain Current ($V_{GS} = 0 \text{ Vdc}, V_{DS} = 100 \text{ Vdc}, T_J = 25^{\circ}\text{C}$) ($V_{GS} = 0 \text{ Vdc}, V_{DS} = 100 \text{ Vdc}, T_J = 125^{\circ}\text{C}$)		I _{DSS}			1.0 10	μAdc
Gate-Body Leakage Current (VGS	= ± 20 Vdc, V _{DS} = 0)	I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS		•			•	•
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \ \mu Adc$) Temperature Coefficient (Nega	tive)	V _{GS(th)}	1.0 _	1.5 -4.4	2.0	Vdc mV/°C
Static Drain-to-Source On-State	Resistance (V_{GS} = 5.0 Vdc, I_D = 6.0 Adc)	R _{DS(on)}	-	118	146	mΩ
Drain-to-Source On-Voltage (VGS	_S = 5.0 Vdc, I _D = 12 Adc)	V _{DS(on)}	-	1.5	2.2	Vdc
Forward Transconductance (V _{DS} =	= 10 Vdc, I _D = 6.0 Adc)	9fs	-	10	-	mhos
DYNAMIC CHARACTERISTICS		•			•	•
Input Capacitance		C _{iss}	-	463	700	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	116	225	
Reverse Transfer Capacitance	· · · · · · · · · · · · · · · · · · ·	C _{rss}	-	36	75	
SWITCHING CHARACTERISTICS	(Notes 4 & 5)					
Turn-On Delay Time		t _{d(on)}	-	10.5	20	ns
Rise Time	(V _{DD} = 80 Vdc, I _D = 6.0 Adc,	tr	-	75	140	
Turn-Off Delay Time	$V_{GS} = 5.0 \text{ Vdc}, \text{ R}_{G} = 9.1 \Omega$	t _{d(off)}	-	26	40	
Fall Time		t _f	-	50	90	
Total Gate Charge		Q _{tot}	-	11.3	20	nC
Gate-to-Source Charge	$(V_{DS} = 80 \text{ Vdc}, I_D = 6.0 \text{ Adc}, V_{GS} = 5.0 \text{ Vdc})$	Q _{gs}	-	1.9	-	
Gate-to-Drain Charge		Q _{gd}	-	7.4	-	
BODY-DRAIN DIODE RATINGS (M	Note 4)					
Diode Forward On–Voltage	$(I_{S} = 12 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = 12 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 125^{\circ}\text{C})$	V _{SD}		0.90 0.80	1.4 -	Vdc
Reverse Recovery Time		t _{rr}	-	80	-	ns
	(I _S = 12 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs)	t _a	-	50	-	
		t _b	-	30	-	
Reverse Recovery Stored Charge		Q _{RR}	-	0.240	-	μC

Indicates Pulse Test: P.W. = 300 μs max, Duty Cycle = 2%.
Switching characteristics are independent of operating junction temperature.

ORDERING INFORMATION


Device	Package	Shipping [†]	
NTD6600N	DPAK		
NTD6600N-1	DPAK-3	75 Units/Rail	
NTD6600N-1G	DPAK-3 (Pb-Free)	- 75 Units/Rail	
NTD6600NT4	DPAK		
NTD6600NT4G	DPAK (Pb–Free)	2500 Tape & Reel	

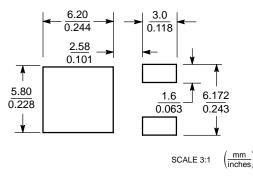
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

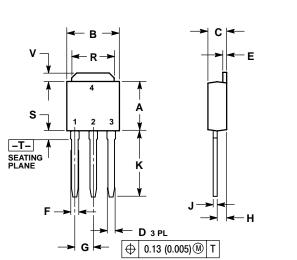
PACKAGE DIMENSIONS

DPAK CASE 369C-01 ISSUE O

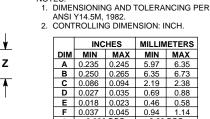


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
в	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180	BSC	4.58 BSC		
н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
ĸ	0.102	0.114	2.60	2.89	
L	0.090	0.090 BSC		2.29 BSC	
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK-3 CASE 369D-01 **ISSUE B**

NOTES

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090 BSC		2.29	BSC	
н	0.034	0.040	0.87 1.0		
J	0.018	0.023	0.46	0.58	
κ	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
V	0.035	0.050	0.89	1.27	
Ζ	0.155		3.93		

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE DRAIN 4

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTD6600N/D

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI APT1201R6BVFRG